The max cut problem

Veronica Piccialli*

ESI 2010 - Klagenfurt

^{*}University of Rome Tor Vergata

Max Cut

Introduction	- Given a graph $G(V E)$, find $S \subset V$ such that the cut
 Max Cut 	Siven a graph $O(V, E)$, a mu $D \subseteq V$ such that the cut
An application in statistical physics The Goemans and Williamson algorithm	$ V = n$ with weights w_{ij} for $ egree S, V \setminus S$ is maximum. - all $(i,j) \in E$

Bibliography

Introducing the variables:

$$x_i = \left\{ \begin{array}{ll} 1 & \text{if } i \in S \\ -1 & \text{if } i \in V \setminus S \end{array} \right.$$

Max Cut

Introduction	- Civon a
Max Cut	Given a
An application in statistical physics	$ V = n \mathbf{v}$
The Goemans and Williamson algorithm	all $(i, j) \in$

en a graph G(V, E), rightarrow find $S \subseteq V$ such that the cut $i, j) \in E$

Bibliography

Introducing the variables:

$$x_i = \left\{ \begin{array}{ll} 1 & \text{ if } i \in S \\ -1 & \text{ if } i \in V \setminus S \end{array} \right.$$

The max cut problem can be expressed as

$$\max \frac{1}{2} \sum_{i < j} w_{ij} (1 - x_i x_j)$$

$$x_i^2 = 1 \quad i = 1, \dots, n$$
 (MC)

Max Cut

all $(i, j) \in E$

 Max Cut
An application in

Introduction

statistical physics

The Goemans and Williamson algorithm

Bibliography

Introducing the variables:

$$x_i = \begin{cases} 1 & \text{if } i \in S \\ -1 & \text{if } i \in V \setminus S \end{cases}$$

Given a graph G(V, E), rightarrow find $S \subseteq V$ such that the cut |V| = n with weights w_{ij} for rightarrow $S, V \setminus S$ is maximum.

The max cut problem can be expressed as

$$\max \frac{1}{2} \sum_{i < j} w_{ij} (1 - x_i x_j)$$

$$x_i^2 = 1 \quad i = 1, \dots, n$$
 (MC)

It can be rewritten as

$$\max_{i} x^{T} C x$$

$$x_{i}^{2} = 1 \quad i = 1, \dots, n$$
(MC)

where $C = \frac{1}{4} \left(\text{Diag}(We) - W \right) = \frac{1}{4}L$ (*L* is the Laplacian of the graph)

Introduction

An application in statistical physics

- Spin glasses
- Mathematical model
- Ising spins
- Ising model and max
- cut I

• Ising model and max cut II

The Goemans and Williamson algorithm

Williamson algoritm

Bibliography

A very interesting problem in statistical physics (within theory of magnetism) is the determination of ground states of spin glasses

Introduction

An application in statistical physics

- Spin glasses
- Mathematical model
- Ising spins
- Ising model and max
- cut I
- Ising model and max cut II
- The Goemans and Williamson algorithm

Bibliography

A very interesting problem in statistical physics (within theory of magnetism) is the determination of ground states of spin glasses

A spin glass is an alloy of magnetic impurities diluited in a non magnetic metal

Introduction

An application in statistical physics

- Spin glasses
- Mathematical model
- Ising spins
- Ising model and max
- cut I
- Ising model and max cut II

The Goemans and Williamson algorithm

Bibliography

A very interesting problem in statistical physics (within theory of magnetism) is the determination of ground states of spin glasses

A spin glass is an alloy of magnetic impurities diluited in a non magnetic metal

A peak in magnetic susceptibility at a certain temperature means a phase transition. It is not known what happens at low temperature.

Introduction

An application in statistical physics

- Spin glasses
- Mathematical model
- Ising spins
- Ising model and max
- cut I
- Ising model and max cut II

The Goemans and Williamson algorithm

Bibliography

A very interesting problem in statistical physics (within theory of magnetism) is the determination of ground states of spin glasses

- A spin glass is an alloy of magnetic impurities diluited in a non magnetic metal
- A peak in magnetic susceptibility at a certain temperature means a phase transition. It is not known what happens at low temperature.
- There are some theories on spin glasses behavior but it is impossible to realize by practical experiments the situation predicted by the theory, so mathematical models are used

Introduction	- Assume a spin glass contains n magnetic impurities (atoms).
An application in statistical physics	-
 Spin glasses 	
Mathematical model	
 Ising spins Ising model and max cut I Ising model and max cut II 	
The Goemans and Williamson algorithm	_
Bibliography	_

Introd	uction
muou	uction

An application in statistical physics

- Spin glasses
- Mathematical model
- Ising spins

Ising model and max

cut I

• Ising model and max cut II

The Goemans and

Williamson algorithm

Bibliography

Assume a spin glass contains n magnetic impurities (atoms). The magnetic orientation of each atom is represented by $S_i \in \mathbb{R}^3$, $||S_i|| = 1, i = 1, ..., n$

Introduction

An application in statistical physics

- Spin glasses
- Mathematical model
- Ising spins
- Ising model and max
- cut I
- Ising model and max cut II

The Goemans and Williamson algorithm

Bibliography

Assume a spin glass contains n magnetic impurities (atoms). The magnetic orientation of each atom is represented by $S_i \in \mathbb{R}^3$, $||S_i|| = 1, i = 1, ..., n$ For each pair i, j of atoms there is an interaction J_{ij} depending on the material and on the distance (decreases quickly with the distance), an example is

$$J_{ij} = A \frac{\cos(Dr_{ij})}{B^3 r_{ij}^3}, \quad A, B, D$$
 depending on the material

Introduction

An application in statistical physics

- Spin glasses
- Mathematical model
- Ising spins
- Ising model and max
- cut I
- Ising model and max cut II

The Goemans and Williamson algorithm

Bibliography

Assume a spin glass contains n magnetic impurities (atoms). The magnetic orientation of each atom is represented by $S_i \in \mathbb{R}^3$, $||S_i|| = 1, i = 1, ..., n$ For each pair i, j of atoms there is an interaction J_{ij} depending on the material and on the distance (decreases quickly with the distance), an example is

$$J_{ij} = A \frac{\cos(Dr_{ij})}{B^3 r_{ij}^3}, \quad A, B, D$$
 depending on the material

If atom i and j have spins S_i and S_j , the energy interaction between the two atoms is given by

$$H_{ij} = J_{ij} \langle S_i, S_j \rangle$$

Given a configuration ω , the energy of the system is given by the hamiltonian

$$H(\omega) = -\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} J_{ij} \langle S_i, S_j \rangle - h \sum_{i=1}^{n} J_{ij} \langle S_i, F \rangle$$

where $F \in \mathbb{R}^3$, ||F|| = 1 represents the orientation of an exterior magnetic field of strength h.

I	n	tr	0	dı	in	ti	n	n
I	11	u	υ	uι	JC	u	J	

An application in statistical physics

• Spin glasses

- Mathematical model
- Ising spins

Ising model and max

cut I

• Ising model and max cut II

The Goemans and

Williamson algorithm

Bibliography

A possible simplification is to replace $S_i \in \mathbb{R}^3$, i = 1, ..., n and $F \in \mathbb{R}^3$ with $s_i \in \{-1, 1\}$, i = 1, ..., n and $f \in \{-1, 1\}$, meaning magnetic north pole up and magnetic north pole down

Introduction	A possible simplification is to replace $S_i \in \mathbb{R}^3$ $i-1$ n and $F \in \mathbb{R}^3$ with
An application in statistical physics • Spin glasses • Mathematical model	$s_i \in \{-1, 1\}, i = 1,, n$ and $f \in \{-1, 1\}$, meaning magnetic north pole up and magnetic north pole down
 Ising spins Ising model and max cut I Ising model and max cut II 	The resulting model is called Ising spin glasses (correct model for some substances).
The Goemans and Williamson algorithm	
Bibliography	

Introduction	A possible simplification is to replace $S_i \in \mathbb{R}^3$, $i = 1, \dots, n$ and $F \in \mathbb{R}^3$ with
An application in statistical physics	$s_i \in \{-1, 1\}, i = 1, \dots, n$ and $f \in \{-1, 1\}$, meaning magnetic north pole up
Spin glassesMathematical model	and magnetic north pole down
 Ising spins Ising model and max cut I Ising model and max cut II The Goemans and Williamson algorithm 	The resulting model is called Ising spin glasses (correct model for some substances). Two possibilities:
Bibliography	

Introduction	- A possible simplification is to replace $S_i \in \mathbb{R}^3$, $i = 1, \dots, n$ and $F \in \mathbb{R}^3$ with
An application in statistical physics	$s_i \in \{-1, 1\}, i = 1, \dots, n$ and $f \in \{-1, 1\}$, meaning magnetic north pole up
Spin glassesMathematical model	and magnetic north pole down
Ising spinsIsing model and max	The resulting model is called Ising spin glasses (correct model for some
cut I ● Ising model and max	substances).
cut II	Two possibilities:
The Goemans and Williamson algorithm	-
Bibliography	1. Long range model: considering the interaction between all pairs of atoms

Introduction	- A possible simplification is to replace $S_i \in \mathbb{R}^3$ $i=1$ n and $F \in \mathbb{R}^3$ with
An application in statistical physics	$s_i \in \{-1,1\}$, $i=1,\ldots,n$ and $f \in \{-1,1\}$, meaning magnetic north pole up
 Mathematical model 	and magnetic north pole down
Ising spinsIsing model and max	The resulting model is called Ising spin glasses (correct model for some
cut I ● Ising model and max	substances).
cut II	Two possibilities:
The Goemans and Williamson algorithm	
Bibliography	1. Long range model: considering the interaction between all pairs of atoms

2. Short range model: considering the interaction only between "close" atoms, setting to zero the interaction between atoms being far apart

Introduction	- A possible simplification is to replace $S_i \in \mathbb{R}^3$ $i=1$ n and $F \in \mathbb{R}^3$ with
An application in statistical physics • Spin glasses	$s_i \in \{-1,1\}$, $i = 1, \ldots, n$ and $f \in \{-1,1\}$, meaning magnetic north pole up
Mathematical model	and magnetic north pole down
 Ising spins Ising model and max cut I 	The resulting model is called Ising spin glasses (correct model for some
 Ising model and max 	substances).
	Two possibilities:
The Goemans and Williamson algorithm	_
Bibliography	_ 1. Long range model: considering the interaction between all pairs of atoms

2. Short range model: considering the interaction only between "close" atoms, setting to zero the interaction between atoms being far apart

The short range Ising spin glass model allowed to predict a phase transition that was experimentally observed (Nobel prize to Onsager)

Introduction	- A possible simplification	
An application in statistical physics	A possible simplification $s_i \in \{-1, 1\}, i = 1, \dots$	
 Spin glasses 		
 Mathematical model 	and magnetic north pole	
 Ising spins Ising model and max 	The resulting model is ca	
cut I • Ising model and max	substances).	
cut II	Two possibilities:	
The Goemans and		
Williamson algorithm	-	
Bibliography	_ 1. Long range model	

possible simplification is to replace $S_i \in \mathbb{R}^3$, i = 1, ..., n and $F \in \mathbb{R}^3$ with $i \in \{-1, 1\}$, i = 1, ..., n and $f \in \{-1, 1\}$, meaning magnetic north pole up nd magnetic north pole down he resulting model is called Ising spin glasses (correct model for some ubstances).

- 1. Long range model: considering the interaction between all pairs of atoms
- 2. Short range model: considering the interaction only between "close" atoms, setting to zero the interaction between atoms being far apart

The short range Ising spin glass model allowed to predict a phase transition that was experimentally observed (Nobel prize to Onsager)

At 0 K the spin glasses configuration attains a minimum energy configuration, that can be found by minimizing the Hamiltonian associated with the system. This problem can be formulated as a max cut problem

Introduction	— We define a graph G with $n+1$ nodes (n atoms plus an external magnet
An application in statistical physics	represented by the node 0)
 Spin glasses 	
 Mathematical model 	
 Ising spins Ising model and max cut I Ising model and max cut II 	
The Goemans and Williamson algorithm	- -

Introduction
muouuon

An application in statistical physics

- Spin glasses
- Mathematical model
- Ising spins
- Ising model and max
- cut I
- Ising model and max cut II

The Goemans and Williamson algorithm

Bibliography

We define a graph G with n + 1 nodes (n atoms plus an external magnetic field represented by the node 0)

For a pair i, j G contains an edge ij if the interaction between i and j is not zero, and the weight of the edge is equal to J_{ij} .

Introduction
muouuon

An application in statistical physics

- Spin glasses
- Mathematical model
- Ising spins
- Ising model and max
- cut IIsing model and max

cut II

The Goemans and Williamson algorithm

Bibliography

We define a graph G with n + 1 nodes (n atoms plus an external magnetic field represented by the node 0)

For a pair i, j G contains an edge ij if the interaction between i and j is not zero, and the weight of the edge is equal to J_{ij} .

There exist n edges 0i with weigth $J_{0i} = h$

Introduction

- An application in statistical physics
- Spin glasses
- Mathematical model
- Ising spins
- Ising model and max
- cut IIsing model and max

cut II

The Goemans and Williamson algorithm

Bibliography

We define a graph G with n + 1 nodes (n atoms plus an external magnetic field represented by the node 0)

For a pair i, j G contains an edge ij if the interaction between i and j is not zero, and the weight of the edge is equal to J_{ij} .

There exist n edges 0i with weigth $J_{0i} = h$

Then the Hamiltonian can be represented as a quadratic function

$$H(\omega) = -\sum_{ij \in E, i,j>0} J_{ij} s_i s_j - h \sum_{i=1}^n s_i = -\sum_{ij \in E} J_{ij} s_i s_j$$

Introduction

- An application in statistical physics
- Spin glasses
- Mathematical model
- Ising spins
- Ising model and max
- cut IIsing model and max

cut II

The Goemans and Williamson algorithm

```
Bibliography
```

We define a graph G with n + 1 nodes (n atoms plus an external magnetic field represented by the node 0)

For a pair $i, j \in G$ contains an edge ij if the interaction between i and j is not zero, and the weight of the edge is equal to J_{ij} .

There exist n edges 0i with weigth $J_{0i} = h$

Then the Hamiltonian can be represented as a quadratic function

$$H(\omega) = -\sum_{ij \in E, i,j>0} J_{ij} s_i s_j - h \sum_{i=1}^n s_i = -\sum_{ij \in E} J_{ij} s_i s_j$$

Each spin configuration corresponds to a partition of the nodes into $V^+ = \{i: s_i = 1\}, V^- = \{i: s_i = -1\}$

Introduction

An application in statistical physics

Spin glasses

Mathematical model

Ising spins

Ising model and max

cut I

• Ising model and max

cut II

The Goemans and

Williamson algorithm

For any
$$W \subseteq V$$
, define $E(W) = \{ij \in E : i \in W, j \in W\}$,
 $\delta(W) = \{ij \in E : i \in W, j \in V \setminus W\}$

Introduction

An application in statistical physics

• Spin glasses

- Mathematical model
- Ising spins

• Ising model and max

cut I

• Ising model and max

cut II

The Goemans and

Williamson algorithm

For any
$$W \subseteq V$$
, define $E(W) = \{ij \in E : i \in W, j \in W\}$, $\delta(W) = \{ij \in E : i \in W, j \in V \setminus W\}$

$$H(\omega) = -\sum_{ij\in E} J_{ij}s_is_j = -\sum_{ij\in E(V^+)} J_{ij} - \sum_{ij\in E(V^-)} J_{ij} + \sum_{ij\in \delta(V^+)} J_{ij}$$

Setting $C = \sum_{ij \in E} J_{ij}$, we get

 $\delta(W) = \{ ij \in E : i \in W, j \in V \setminus W \}$

Introduction

An application in statistical physics

• Spin glasses

- Mathematical model
- Ising spins

Ising model and max

cut I

Ising model and max

cut II

The Goemans and Williamson algorithm $ij \in E$

For any $W \subseteq V$, define $E(W) = \{ij \in E : i \in W, j \in W\}$,

Bibliography

 $H(\omega) + C = 2$ $\sum J_{ij}$ $ij \in \delta(V^+)$

 $H(\omega) = -\sum J_{ij}s_is_j = -\sum J_{ij} - \sum J_{ij} + \sum J_{ij}$ $ij \in E(V^+)$ $ij \in E(V^-)$ $ij \in \delta(V^+)$

 $\delta(W) = \{ ij \in E : i \in W, j \in V \setminus W \}$

Introduction

An application in statistical physics

• Spin glasses

- Mathematical model
- Ising spins

• Ising model and max

cut I

• Ising model and max

cut II

The Goemans and Williamson algorithm

Bibliography

Setting $C = \sum_{ij \in E} J_{ij}$, we get

 $ij \in E$

$$H(\omega) + C = 2 \sum_{ij \in \delta(V^+)} J_{ij}$$

 $H(\omega) = -\sum J_{ij}s_is_j = -\sum J_{ij} - \sum J_{ij} + \sum J_{ij}$

 $ij \in E(V^+)$ $ij \in E(V^-)$ $ij \in \delta(V^+)$

For any $W \subseteq V$, define $E(W) = \{ij \in E : i \in W, j \in W\}$,

Setting $c_{ij} = -J_{ij}$ for all $ij \in E$, then minimizing $H(\omega)$ is equivalent to solve

$$\max_{V^+ \subseteq V} \sum_{ij \in \delta(V^+)} c_{ij}$$

Relaxation

Introduction

Noting that

An application in statistical physics

The Goemans and

Williamson algorithm

Relaxation

• Properties of the SDP

relaxation

Alternative way of

deriving the SDP

relaxation

Goemans and

Williamson algorithm

Performance of the

algorithm

Nonlinear

reformulation of max cut

I

Nonlinear

reformulation of max cut

П

Nesterov's result

Bibliography

 $x^T C x = \langle C, x x^T \rangle = \langle C, X \rangle, \text{ for } X = x x^T$

Relaxation

Introduction

Noting that

The max cut problem is then equivalent to:

An application in statistical physics

The Goemans and Williamson algorithm

Relaxation

• Properties of the SDP

relaxation

• Alternative way of deriving the SDP

relaxation

Goemans and

Williamson algorithm

Performance of the

algorithm

Nonlinear

reformulation of max cut

I

Nonlinear

reformulation of max cut

Ш

Nesterov's result

Bibliography

 $\max \quad \begin{array}{l} \langle C, X \rangle \\ \operatorname{diag}(X) = e \\ X \succeq 0 \\ \operatorname{rank}(X) = 1 \end{array}$

 $x^T C x = \langle C, x x^T \rangle = \langle C, X \rangle, \text{ for } X = x x^T$

Relaxation

Introduction An application in statistical physics	Noting that $x^T C x = \langle C, x x^T \rangle = \langle C, X \rangle$, for $X = x x^T$
The Goemans and Williamson algorithm • Relaxation • Properties of the SDP	The max cut problem is then equivalent to:
 Alternative way of deriving the SDP relaxation Goemans and Williamson algorithm Performance of the algorithm 	$ \begin{array}{ll} \max & \langle C, X \rangle \\ & \operatorname{diag}(X) = e \\ & X \succeq 0 \\ & \operatorname{rank}(X) = 1 \end{array} \end{array} $
 Nonlinear reformulation of max cut I Nonlinear reformulation of max cut II Nesterov's result Bibliography 	Dropping the rank constraint, the standard SDP relaxation of max cut can be obtained: $\max \langle C, X \rangle$ $\operatorname{diag}(X) = e$

⊢

Properties of the SDP relaxation

Introduction

An application in statistical physics

The Goemans and Williamson algorithm

- Relaxation
- Properties of the SDP
- relaxation

• Alternative way of deriving the SDP

relaxation

• Goemans and

Williamson algorithm

- Performance of the algorithm
- Nonlinear

reformulation of max cut

Ι.

Nonlinear

reformulation of max cut

Ш

Nesterov's result

- 1. Slater is satisfied for both primal and dual so strong duality holds
- 2. The constraints $\operatorname{diag}(X) = e$, $X \succeq 0$ imply that $-1 \leq X_{ij} \leq 1$ for all i, j.
- 3. If X is feasible, and $|X_{ij}| = 1$, then $x_{ik} = \operatorname{sgn}(x_{ij})x_{jk}$
- 4. The only feasible matrix of rank 1 satisfying $X_{ij} \in \{-1, 1\}$ are of the form xx^T , with $x \in \{-1, 1\}^n$

Introduction

The max cut problem can be written as

An application in

statistical physics

The Goemans and Williamson algorithm

- Relaxation
- Properties of the SDP
- relaxation

• Alternative way of

deriving the SDP

relaxation

Goemans and

Williamson algorithm

Performance of the

algorithm

Nonlinear

reformulation of max cut

L

Nonlinear

reformulation of max cut

П

Nesterov's result

$$\frac{1}{2} \max \sum_{i < j} w_{ij} (1 - x_i x_j)$$

$$x_i^2 = 1 \quad i = 1, \dots, n$$
(MC)

Introduction

The max cut problem can be written as

An application in

statistical physics

The Goemans and Williamson algorithm

- Relaxation
- Properties of the SDP
- relaxation

• Alternative way of

deriving the SDP

```
relaxation
```

• Goemans and

Williamson algorithm

• Performance of the algorithm

Nonlinear

reformulation of max cut

I

Nonlinear

reformulation of max cut

Ш

Nesterov's result

$$\frac{1}{2} \max \sum_{i < j} w_{ij} (1 - x_i x_j)$$

$$x_i^2 = 1 \quad i = 1, \dots, n$$
(MC)

Introduction

An application in

statistical physics

The Goemans and Williamson algorithm

- Relaxation
- Properties of the SDP
- relaxation

• Alternative way of

deriving the SDP

relaxation

Goemans and

Williamson algorithm

• Performance of the

- algorithm
- Nonlinear

reformulation of max cut

I

Nonlinear

reformulation of max cut

Ш

Nesterov's result

Bibliography

The max cut problem can be written as

$$\frac{1}{2} \max \sum_{i < j} w_{ij} (1 - x_i x_j)$$

$$x_i^2 = 1 \quad i = 1, \dots, n$$
(MC)

$$\begin{array}{ll} x_i & \Rightarrow & v_i \in \mathbb{R}^k, \, k \le n \\ x_i^2 = 1 & \Rightarrow & \|v_i\| = 1 \end{array}$$

Introduction

An application in

statistical physics

The Goemans and Williamson algorithm

- Relaxation
- Properties of the SDP
- relaxation

• Alternative way of

deriving the SDP

relaxation

Goemans and

Williamson algorithm

Performance of the

algorithm

Nonlinear

reformulation of max cut

Ι.

Nonlinear

reformulation of max cut

Ш

Nesterov's result

Bibliography

The max cut problem can be written as

$$\frac{1}{2} \max \sum_{i < j} w_{ij} (1 - x_i x_j)$$

$$x_i^2 = 1 \quad i = 1, \dots, n$$
(MC)

$$\begin{array}{ll} x_i & \Rightarrow & v_i \in \mathbb{R}^k, \, k \le n \\ x_i^2 = 1 & \Rightarrow & \|v_i\| = 1 \end{array}$$

 v_i is the relaxation of $x_i \in \{-1, 1\}$ to the *n*-dimensional unit sphere.

Introduction

An application in

statistical physics

The Goemans and Williamson algorithm

- Relaxation
- Properties of the SDP
- relaxation

Alternative way of

deriving the SDP

relaxation

• Goemans and

Williamson algorithm

• Performance of the

algorithm

Nonlinear

reformulation of max cut

Nonlinear

reformulation of max cut

Ш

Nesterov's result

Bibliography

The max cut problem can be written as

 $\frac{1}{2} \max \sum_{i < j} w_{ij} (1 - x_i x_j)$ $x_i^2 = 1 \quad i = 1, \dots, n$ (MC)

The feasible region can be enlarged:

 $\begin{array}{ll} x_i & \Rightarrow & v_i \in \mathbb{R}^k, \, k \le n \\ x_i^2 = 1 & \Rightarrow & \|v_i\| = 1 \end{array}$

 v_i is the relaxation of $x_i \in \{-1, 1\}$ to the *n*-dimensional unit sphere. We get the problem

$$\max \sum_{i,j} \sum_{i < j} w_{ij} (1 - v_i^T v_j)$$
$$\|v_i\|^2 = 1 \quad i = 1, \dots, n, v_i \in \mathbb{R}^n$$

(the same as $X = VV^T$)

Introduction

S1 First, solve

An application in statistical physics

The Goemans and

Williamson algorithm

- Relaxation
- Properties of the SDP
- relaxation
- Alternative way of
- deriving the SDP
- relaxation
- Goemans and
- Williamson algorithm
- Performance of the
- algorithm
- Nonlinear

reformulation of max cut

- I
- Nonlinear

reformulation of max cut

Ш

Nesterov's result

$$\max \sum_{i,j} \sum_{i < j} w_{ij} (1 - v_i^T v_j)$$
$$\|v_i\|^2 = 1 \quad i = 1, \dots, n, v_i \in \mathbb{R}^n$$

Introduction

S1 First, solve

An application in statistical physics

The Goemans and Williamson algorithm

- Relaxation
- Properties of the SDP
- relaxation
- Alternative way of
- deriving the SDP
- relaxation
- Goemans and
- Williamson algorithm
- Performance of the

algorithm

Nonlinear

reformulation of max cut

I

Nonlinear

reformulation of max cut

Ш

Nesterov's result

Bibliography

$\max \sum_{i,j} \sum_{i < j} w_{ij} (1 - v_i^T v_j)$ $\|v_i\|^2 = 1 \quad i = 1, \dots, n, v_i \in \mathbb{R}^n$

S2 Choose a random vector h on the unit sphere

Introduction

S1 First, solve

An application in statistical physics

The Goemans and Williamson algorithm

- Relaxation
- Properties of the SDP
- relaxation
- Alternative way of
- deriving the SDP
- relaxation
- Goemans and
- Williamson algorithm
- Performance of the

algorithm

Nonlinear

reformulation of max cut

۱

Nonlinear

reformulation of max cut

II

Nesterov's result

Bibliography

$$\max \sum_{i,j} \sum_{i < j} w_{ij} (1 - v_i^T v_j)$$
$$\|v_i\|^2 = 1 \quad i = 1, \dots, n, v_i \in \mathbb{R}^n$$

S2 Choose a random vector h on the unit sphere

S3 Set
$$V = \{i : h^T v_i \ge 0\}$$

Introduction

S1 First, solve

An application in statistical physics

The Goemans and Williamson algorithm

- Relaxation
- Properties of the SDP
- relaxation
- Alternative way of
- deriving the SDP
- relaxation
- Goemans and
- Williamson algorithm

• Performance of the algorithm

• Nonlinear

reformulation of max cut

Nonlinear

reformulation of max cut

Ш

Nesterov's result

Bibliography

 $\max \sum_{i,j} \sum_{i < j} w_{ij} (1 - v_i^T v_j)$ $\|v_i\|^2 = 1 \quad i = 1, \dots, n, v_i \in \mathbb{R}^n$

S2 Choose a random vector h on the unit sphere

S3 Set $V = \{i : h^T v_i \ge 0\}$

Let \boldsymbol{W} be the corresponding cut

Introduction

An application in statistical physics

The Goemans and

Williamson algorithm

- Relaxation
- Properties of the SDP
- relaxation
- Alternative way of
- deriving the SDP
- relaxation
- Goemans and
- Williamson algorithm
- Performance of the

algorithm

Nonlinear

reformulation of max cut

- I
- Nonlinear

reformulation of max cut

Ш

Nesterov's result

Bibliography

1. The expected value of the produced cut is:

$$E[W] = \sum_{i < j} w_{ij} \frac{\arccos(v_i^T v_j)}{\pi}$$

Introduction

An application in statistical physics

The Goemans and

Williamson algorithm

- Relaxation
- Properties of the SDP
- relaxation
- Alternative way of
- deriving the SDP

relaxation

Goemans and

Williamson algorithm

Performance of the

algorithm

Nonlinear

reformulation of max cut

- I
- Nonlinear

reformulation of max cut

П

• Nesterov's result

Bibliography

1. The expected value of the produced cut is:

$$E[W] = \sum_{i < j} w_{ij} \frac{\arccos(v_i^T v_j)}{\pi}$$

2. Assume $w_{ij} \ge 0$. Then $E(W) \ge \alpha \frac{1}{2} \sum_{i < j} w_{ij} (1 - v_i^T v_j)$, with

$$\alpha = \min_{0 \le \theta \le \pi} \frac{2}{\pi} \frac{\theta}{1 - \cos(\theta)}$$

Introduction

An application in statistical physics

The Goemans and

- Williamson algorithm
- Relaxation
- Properties of the SDP
- relaxation
- Alternative way of
- deriving the SDP

relaxation

- Goemans and
- Williamson algorithm
- Performance of the

algorithm

Nonlinear

reformulation of max cut

- I
- Nonlinear

reformulation of max cut

Ш

Nesterov's result

Bibliography

1. The expected value of the produced cut is:

$$E[W] = \sum_{i < j} w_{ij} \frac{\arccos(v_i^T v_j)}{\pi}$$

2. Assume
$$w_{ij} \ge 0$$
. Then $E(W) \ge \alpha \frac{1}{2} \sum_{i < j} w_{ij} (1 - v_i^T v_j)$, with

$$\alpha = \min_{0 \le \theta \le \pi} \frac{2}{\pi} \frac{\theta}{1 - \cos(\theta)}$$

3. $\alpha > 0.87856$

Introduction

An application in statistical physics

The Goemans and Williamson algorithm

- Relaxation Properties of the SDP
- relaxation
- Alternative way of
- deriving the SDP
- relaxation
- Goemans and
- Williamson algorithm
- Performance of the
- algorithm
- Nonlinear

reformulation of max cut

- Ι.
- Nonlinear

reformulation of max cut

- Ш
- Nesterov's result

Bibliography

1. The expected value of the produced cut is:

$$E[W] = \sum_{i < j} w_{ij} \frac{\arccos(v_i^T v_j)}{\pi}$$

2. Assume
$$w_{ij} \ge 0$$
. Then $E(W) \ge \alpha \frac{1}{2} \sum_{i < j} w_{ij} (1 - v_i^T v_j)$, with

$$\alpha = \min_{0 \le \theta \le \pi} \frac{2}{\pi} \frac{\theta}{1 - \cos(\theta)}$$

3.
$$\alpha > 0.87856$$

4. Assume
$$w_{ij} \ge 0$$
. Then $\frac{z_{\rm MC}^*}{z_{\rm MC}^* - z_{\rm SDP}^*} > 0.87856$

Introduction

An application in statistical physics

The Goemans and Williamson algorithm

- Delevetier
- Relaxation Properties of the SDP
- relaxation
- Alternative way of
- deriving the SDP
- relaxation
- Goemans and
- Williamson algorithm
- Performance of the

algorithm

Nonlinear

reformulation of max cut

- 1
- Nonlinear

reformulation of max cut

П

• Nesterov's result

Bibliography

1. The expected value of the produced cut is:

$$E[W] = \sum_{i < j} w_{ij} \frac{\arccos(v_i^T v_j)}{\pi}$$

2. Assume
$$w_{ij} \ge 0$$
. Then $E(W) \ge \alpha \frac{1}{2} \sum_{i < j} w_{ij} (1 - v_i^T v_j)$, with

$$\alpha = \min_{0 \le \theta \le \pi} \frac{2}{\pi} \frac{\theta}{1 - \cos(\theta)}$$

3.
$$\alpha > 0.87856$$

- 4. Assume $w_{ij} \ge 0$. Then $\frac{z_{\rm MC}^*}{z_{\rm MC}^* z_{\rm SDP}^*} > 0.87856$
- 5. Note that there is no polynomial approximation algorithm with constant < 0.9412 unless P=NP [Hästad 1997].

Nonlinear reformulation of max cut I

Introduction

The max cut problem is equivalent to

An application in statistical physics

The Goemans and Williamson algorithm

- Relaxation
- Properties of the SDP
- relaxation

Alternative way of

deriving the SDP

relaxation

Goemans and

Williamson algorithm

• Performance of the algorithm

• Nonlinear

reformulation of max cut

L

Nonlinear

reformulation of max cut

Ш

Nesterov's result

Bibliography

 $\max \langle C\sigma(Vu), \sigma(Vu) \rangle$ $\|v_i\| = 1 \quad i = 1, \dots, n$ $\|u\| = 1$

where for any
$$a \in \mathbb{R}^n$$
, $\sigma(a) = \operatorname{sgn}(a)$, and $V = \begin{pmatrix} v_1^T \\ \vdots \\ v_n^T \end{pmatrix}$

Nonlinear reformulation of max cut I

The max cut problem is equivalent to

Introduction

An application in

statistical physics

The Goemans and Williamson algorithm

- Relaxation
- Properties of the SDP
- relaxation
- Alternative way of
- deriving the SDP
- relaxation
- Goemans and

Williamson algorithm

• Performance of the algorithm

Nonlinear

Nonlinear

Ш

reformulation of max cut

reformulation of max cut

It is also equivalent to

 $\max E_u(\langle C\sigma(Vu), \sigma(Vu) \rangle)$ $\|v_i\| = 1 \quad i = 1, \dots, n$

$$||v_i|| = 1$$
 $i = 1, \dots, n$
 $||u|| = 1$

 $\max \langle C\sigma(Vu), \sigma(Vu) \rangle$

where for any
$$a \in \mathbb{R}^n$$
, $\sigma(a) = \operatorname{sgn}(a)$, and $V = \begin{pmatrix} v_1^T \\ \vdots \\ v_n^T \end{pmatrix}$

Bibliography

Nesterov's result

Nonlinear reformulation of max cut II

Introduction

The max cut problem can be rewritten as

An application in statistical physics

The Goemans and

Williamson algorithm

Relaxation

• Properties of the SDP

relaxation

Alternative way of

deriving the SDP

relaxation

Goemans and

Williamson algorithm

Performance of the

algorithm

Nonlinear

reformulation of max cut

I

• Nonlinear

reformulation of max cut

Ш

Nesterov's result

$$\max \frac{2}{\pi} \langle C, \arcsin(X) \rangle$$

$$\operatorname{diag}(X) = e$$

$$X \succeq 0$$

Nonlinear reformulation of max cut II

Introduction

An application in

statistical physics

The Goemans and Williamson algorithm

- Relaxation
- Properties of the SDP
- relaxation
- Alternative way of
- deriving the SDP

relaxation

Goemans and

Williamson algorithm

- Performance of the algorithm
- Nonlinear

reformulation of max cut

L

Nonlinear

reformulation of max cut

Ш

Nesterov's result

Bibliography

The max cut problem can be rewritten as

$$\max \frac{2}{\pi} \langle C, \arcsin(X) \rangle$$

$$\operatorname{diag}(X) = e$$

$$X \succeq 0$$

Sketch of the proof: Choose $V = X^{\frac{1}{2}}$. Then we need to prove

$$E_u(\langle C\sigma(Vu), \sigma(Vu) \rangle) = \frac{2}{\pi} \langle C, \arcsin(X) \rangle$$

Nesterov's result

Introduction

If $C \succeq 0$, then

An application in

statistical physics

The Goemans and Williamson algorithm

- Relaxation
- Properties of the SDP
- relaxation

Alternative way of

deriving the SDP

relaxation

Goemans and

Williamson algorithm

• Performance of the

algorithm

Nonlinear

reformulation of max cut

L

Nonlinear

reformulation of max cut

Ш

• Nesterov's result

$$\frac{z_{\rm MC}^*}{z_{\rm MC}^* - z_{\rm SDP}^*} > \frac{2}{\pi} = 0.6366$$

Nesterov's result

Introduction If $C \succeq 0$, then An application in statistical physics The Goemans and Williamson algorithm Relaxation • Properties of the SDP relaxation Alternative way of deriving the SDP relaxation ĉ Goemans and Williamson algorithm • Performance of the algorithm and $-1 \leq X_{ij} \leq 1$ then $\arcsin(X) - X \succeq 0$. Since $C \succeq 0$, we get Nonlinear reformulation of max cut Nonlinear reformulation of max cut Ш Nesterov's result Bibliography and hence

 $\frac{z_{\rm MC}^*}{z_{\rm MC}^* - z_{\rm SDP}^*} > \frac{2}{\pi} = 0.6366$

Define $X^{\circ k} = X \circ X^{\circ (k-1)}$ and consider that

$$\operatorname{arcsin}(X) = X + \frac{1}{2} \frac{X^{\circ 3}}{3} + \frac{1 \cdot 3}{2 \cdot 4} \frac{X^{\circ 5}}{5} + \dots$$

$$\frac{2}{\pi}\langle C, \arcsin(X) - X \rangle \ge 0$$

$$z_{MC}^* \ge \frac{2}{\pi} \langle C, \arcsin(X) \rangle \ge \frac{2}{\pi} \langle C, X \rangle = \frac{2}{\pi} z_{SDP}^* \ge \frac{2}{\pi} z_{MC}^*.$$

Some references

Introduction

- An application in
- statistical physics
- The Goemans and Williamson algorithm
- Bibliography
- Some references

- F Barahona, M Grötschel, M Jünger, G Reinelt. An application of combinatorial optimization to statistical physics and circuit layout design. Operations Research 36(3): 493–513 (1988).
- 2 C. Simone, M. Diehl, M. Jünger, P. Mutzel, G. Reinelt and G. Rinaldi. Exact ground states of Ising spin glasses: New experimental results with a branch-and-cut algorithm. Journal of statistical physics 80(1-2): 487–496 (1995)
- 3 F. Liers, M. Jünger, G. Reinelt and G. Rinaldi, Computing Exact Ground States of Hard Ising Spin Glass Problems by Branch-and-Cut, in New Optimization Algorithms in Physics, edited by A. Hartmann and H. Rieger, pages: 47-68, (2004).
- **4** M. Laurent and S. Poljak On a positive semidefinite relaxation of the cut polytope. Linear Algebra and its Application 223/224:439-461 (1995).
- **5** M. Laurent, S, Poljak and F. Rendl. Connections between semidefinite relaxations of the max-cut and stable set problems. Math. Programming 77(2):225-246 (1997).
- **6** M. X. Goemans and D.P. Williamson. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming J. ACM 42:1115-1145 (1995)
- 7 Y. Nesterov Semidefinite relaxation and nonconvex quadratic optimization Optimitization Methods and Software, 9:141-160 (1998).