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Given a graph G(V, E),
|V | = n with weights wij for
all (i, j) ∈ E

find S ⊆ V such that the cut
S, V \ S is maximum.

Introducing the variables:

xi =

{

1 if i ∈ S

−1 if i ∈ V \ S
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Given a graph G(V, E),
|V | = n with weights wij for
all (i, j) ∈ E

find S ⊆ V such that the cut
S, V \ S is maximum.

Introducing the variables:

xi =

{

1 if i ∈ S

−1 if i ∈ V \ S

The max cut problem can be expressed as

max
1

2

∑

i<j

wij(1 − xixj)

x2
i = 1 i = 1, . . . , n

(MC)

It can be rewritten as
maxxT Cx

x2
i = 1 i = 1, . . . , n

(MC)

where C = 1
4 (Diag(We) − W ) = 1

4L (L is the Laplacian of the graph)
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A very interesting problem in statistical physics (within theory of magnetism) is
the determination of ground states of spin glasses
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A very interesting problem in statistical physics (within theory of magnetism) is
the determination of ground states of spin glasses

A spin glass is an alloy of magnetic impurities diluited in a non magnetic metal

A peak in magnetic susceptibility at a certain temperature means a phase
transition. It is not known what happens at low temperature.
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A very interesting problem in statistical physics (within theory of magnetism) is
the determination of ground states of spin glasses

A spin glass is an alloy of magnetic impurities diluited in a non magnetic metal

A peak in magnetic susceptibility at a certain temperature means a phase
transition. It is not known what happens at low temperature.

There are some theories on spin glasses behavior but it is impossible to realize
by practical experiments the situation predicted by the theory, so
mathematical models are used



Mathematical model

Introduction

An application in
statistical physics

• Spin glasses

• Mathematical model

• Ising spins

• Ising model and max
cut I
• Ising model and max
cut II

The Goemans and
Williamson algorithm

Bibliography

4 / 16

Assume a spin glass contains n magnetic impurities (atoms).
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Assume a spin glass contains n magnetic impurities (atoms). The magnetic
orientation of each atom is represented by Si ∈ R

3, ‖Si‖ = 1, i = 1, . . . , n
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Assume a spin glass contains n magnetic impurities (atoms). The magnetic
orientation of each atom is represented by Si ∈ R

3, ‖Si‖ = 1, i = 1, . . . , n

For each pair i, j of atoms there is an interaction Jij depending on the material
and on the distance (decreases quickly with the distance), an example is

Jij = A
cos(Drij)

B3r3
ij

, A, B, D depending on the material
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Assume a spin glass contains n magnetic impurities (atoms). The magnetic
orientation of each atom is represented by Si ∈ R

3, ‖Si‖ = 1, i = 1, . . . , n

For each pair i, j of atoms there is an interaction Jij depending on the material
and on the distance (decreases quickly with the distance), an example is

Jij = A
cos(Drij)

B3r3
ij

, A, B, D depending on the material

If atom i and j have spins Si and Sj , the energy interaction between the two
atoms is given by

Hij = Jij〈Si, Sj〉

Given a configuration ω, the energy of the system is given by the hamiltonian

H(ω) = −

n−1
∑

i=1

n
∑

j=i+1

Jij〈Si, Sj〉 − h

n
∑

i=1

Jij〈Si, F 〉

where F ∈ R
3, ‖F‖ = 1 represents the orientation of an exterior magnetic field

of strength h.
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A possible simplification is to replace Si ∈ R
3, i = 1, . . . , n and F ∈ R

3 with
si ∈ {−1, 1}, i = 1, . . . , n and f ∈ {−1, 1}, meaning magnetic north pole up
and magnetic north pole down
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The resulting model is called Ising spin glasses (correct model for some
substances).



Ising spins

Introduction

An application in
statistical physics

• Spin glasses

• Mathematical model

• Ising spins

• Ising model and max
cut I
• Ising model and max
cut II

The Goemans and
Williamson algorithm

Bibliography

5 / 16

A possible simplification is to replace Si ∈ R
3, i = 1, . . . , n and F ∈ R

3 with
si ∈ {−1, 1}, i = 1, . . . , n and f ∈ {−1, 1}, meaning magnetic north pole up
and magnetic north pole down
The resulting model is called Ising spin glasses (correct model for some
substances).
Two possibilities:



Ising spins

Introduction

An application in
statistical physics

• Spin glasses

• Mathematical model

• Ising spins

• Ising model and max
cut I
• Ising model and max
cut II

The Goemans and
Williamson algorithm

Bibliography

5 / 16

A possible simplification is to replace Si ∈ R
3, i = 1, . . . , n and F ∈ R

3 with
si ∈ {−1, 1}, i = 1, . . . , n and f ∈ {−1, 1}, meaning magnetic north pole up
and magnetic north pole down
The resulting model is called Ising spin glasses (correct model for some
substances).
Two possibilities:

1. Long range model: considering the interaction between all pairs of atoms



Ising spins

Introduction

An application in
statistical physics

• Spin glasses

• Mathematical model

• Ising spins

• Ising model and max
cut I
• Ising model and max
cut II

The Goemans and
Williamson algorithm

Bibliography

5 / 16

A possible simplification is to replace Si ∈ R
3, i = 1, . . . , n and F ∈ R

3 with
si ∈ {−1, 1}, i = 1, . . . , n and f ∈ {−1, 1}, meaning magnetic north pole up
and magnetic north pole down
The resulting model is called Ising spin glasses (correct model for some
substances).
Two possibilities:

1. Long range model: considering the interaction between all pairs of atoms

2. Short range model: considering the interaction only between “close”
atoms, setting to zero the interaction between atoms being far apart
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substances).
Two possibilities:

1. Long range model: considering the interaction between all pairs of atoms

2. Short range model: considering the interaction only between “close”
atoms, setting to zero the interaction between atoms being far apart

The short range Ising spin glass model allowed to predict a phase transition that
was experimentally observed (Nobel prize to Onsager)
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A possible simplification is to replace Si ∈ R
3, i = 1, . . . , n and F ∈ R

3 with
si ∈ {−1, 1}, i = 1, . . . , n and f ∈ {−1, 1}, meaning magnetic north pole up
and magnetic north pole down
The resulting model is called Ising spin glasses (correct model for some
substances).
Two possibilities:

1. Long range model: considering the interaction between all pairs of atoms

2. Short range model: considering the interaction only between “close”
atoms, setting to zero the interaction between atoms being far apart

The short range Ising spin glass model allowed to predict a phase transition that
was experimentally observed (Nobel prize to Onsager)

At 0 K the spin glasses configuration attains a minimum energy configuration, that
can be found by minimizing the Hamiltonian associated with the system. This
problem can be formulated as a max cut problem
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We define a graph G with n + 1 nodes (n atoms plus an external magnetic field
represented by the node 0)
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We define a graph G with n + 1 nodes (n atoms plus an external magnetic field
represented by the node 0)

For a pair i, j G contains an edge ij if the interaction between i and j is not zero,
and the weight of the edge is equal to Jij .
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For a pair i, j G contains an edge ij if the interaction between i and j is not zero,
and the weight of the edge is equal to Jij .

There exist n edges 0i with weigth J0i = h

Then the Hamiltonian can be represented as a quadratic function

H(ω) = −
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ij∈E, i,j>0

Jijsisj − h
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si = −
∑
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We define a graph G with n + 1 nodes (n atoms plus an external magnetic field
represented by the node 0)

For a pair i, j G contains an edge ij if the interaction between i and j is not zero,
and the weight of the edge is equal to Jij .

There exist n edges 0i with weigth J0i = h

Then the Hamiltonian can be represented as a quadratic function

H(ω) = −
∑

ij∈E, i,j>0

Jijsisj − h

n
∑

i=1

si = −
∑

ij∈E

Jijsisj

Each spin configuration corresponds to a partition of the nodes into
V + = {i : si = 1}, V − = {i : si = −1}
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For any W ⊆ V , define E(W ) = {ij ∈ E : i ∈ W, j ∈ W},
δ(W ) = {ij ∈ E : i ∈ W, j ∈ V \ W}
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For any W ⊆ V , define E(W ) = {ij ∈ E : i ∈ W, j ∈ W},
δ(W ) = {ij ∈ E : i ∈ W, j ∈ V \ W}
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ij∈δ(V +)

Jij



Ising model and max cut II

Introduction

An application in
statistical physics

• Spin glasses

• Mathematical model

• Ising spins

• Ising model and max
cut I
• Ising model and max
cut II

The Goemans and
Williamson algorithm

Bibliography

7 / 16

For any W ⊆ V , define E(W ) = {ij ∈ E : i ∈ W, j ∈ W},
δ(W ) = {ij ∈ E : i ∈ W, j ∈ V \ W}

H(ω) = −
∑

ij∈E

Jijsisj = −
∑

ij∈E(V +)

Jij −
∑

ij∈E(V −)

Jij +
∑

ij∈δ(V +)

Jij

Setting C =
∑

ij∈E Jij , we get

H(ω) + C = 2
∑

ij∈δ(V +)

Jij
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For any W ⊆ V , define E(W ) = {ij ∈ E : i ∈ W, j ∈ W},
δ(W ) = {ij ∈ E : i ∈ W, j ∈ V \ W}

H(ω) = −
∑

ij∈E

Jijsisj = −
∑

ij∈E(V +)

Jij −
∑

ij∈E(V −)

Jij +
∑

ij∈δ(V +)

Jij

Setting C =
∑

ij∈E Jij , we get

H(ω) + C = 2
∑

ij∈δ(V +)

Jij

Setting cij = −Jij for all ij ∈ E, then minimizing H(ω) is equivalent to solve

max
V +⊆V

∑

ij∈δ(V +)

cij
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Noting that
xT Cx = 〈C, xxT 〉 = 〈C, X〉, for X = xxT
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Noting that
xT Cx = 〈C, xxT 〉 = 〈C, X〉, for X = xxT

The max cut problem is then equivalent to:

max 〈C, X〉
diag(X) = e

X � 0
rank (X) = 1
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Noting that
xT Cx = 〈C, xxT 〉 = 〈C, X〉, for X = xxT

The max cut problem is then equivalent to:

max 〈C, X〉
diag(X) = e

X � 0
rank (X) = 1

Dropping the rank constraint, the standard SDP relaxation of max cut can be
obtained:

max 〈C, X〉
diag(X) = e

X � 0
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1. Slater is satisfied for both primal and dual so strong duality holds

2. The constraints diag(X) = e, X � 0 imply that −1 ≤ Xij ≤ 1 for all
i, j.

3. If X is feasible, and |Xij | = 1, then xik = sgn(xij)xjk

4. The only feasible matrix of rank 1 satisfying Xij ∈ {−1, 1} are of the form
xxT , with x ∈ {−1, 1}n
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The max cut problem can be written as

1

2
max

∑

i<j

wij(1 − xixj)

x2
i = 1 i = 1, . . . , n

(MC)
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The feasible region can be enlarged:
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The max cut problem can be written as

1

2
max

∑

i<j

wij(1 − xixj)

x2
i = 1 i = 1, . . . , n

(MC)

The feasible region can be enlarged:

xi ⇒ vi ∈ R
k, k ≤ n

x2
i = 1 ⇒ ‖vi‖ = 1
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The max cut problem can be written as

1

2
max

∑

i<j

wij(1 − xixj)

x2
i = 1 i = 1, . . . , n

(MC)

The feasible region can be enlarged:

xi ⇒ vi ∈ R
k, k ≤ n

x2
i = 1 ⇒ ‖vi‖ = 1

vi is the relaxation of xi ∈ {−1, 1} to the n-dimensional unit sphere.
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The max cut problem can be written as

1

2
max

∑

i<j

wij(1 − xixj)

x2
i = 1 i = 1, . . . , n

(MC)

The feasible region can be enlarged:

xi ⇒ vi ∈ R
k, k ≤ n

x2
i = 1 ⇒ ‖vi‖ = 1

vi is the relaxation of xi ∈ {−1, 1} to the n-dimensional unit sphere. We get the
problem

max
∑

i,j

∑

i<j

wij(1 − vT
i vj)

‖vi‖
2 = 1 i = 1, . . . , n, vi ∈ R

n

(the same as X = V V T )
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S1 First, solve

max
∑

i,j

∑

i<j

wij(1 − vT
i vj)

‖vi‖
2 = 1 i = 1, . . . , n, vi ∈ R

n
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i vj)
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n

S2 Choose a random vector h on the unit sphere
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S1 First, solve

max
∑

i,j

∑

i<j

wij(1 − vT
i vj)

‖vi‖
2 = 1 i = 1, . . . , n, vi ∈ R

n

S2 Choose a random vector h on the unit sphere

S3 Set V = {i : hT vi ≥ 0}
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S1 First, solve

max
∑

i,j

∑

i<j

wij(1 − vT
i vj)

‖vi‖
2 = 1 i = 1, . . . , n, vi ∈ R

n

S2 Choose a random vector h on the unit sphere

S3 Set V = {i : hT vi ≥ 0}

Let W be the corresponding cut



Performance of the algorithm

Introduction

An application in
statistical physics

The Goemans and
Williamson algorithm

• Relaxation
• Properties of the SDP
relaxation
• Alternative way of
deriving the SDP
relaxation
• Goemans and
Williamson algorithm

• Performance of the
algorithm

• Nonlinear
reformulation of max cut
I
• Nonlinear
reformulation of max cut
II

• Nesterov’s result

Bibliography

12 / 16

1. The expected value of the produced cut is:

E[W ] =
∑

i<j

wij

arcos(vT
i vj)

π



Performance of the algorithm

Introduction

An application in
statistical physics

The Goemans and
Williamson algorithm

• Relaxation
• Properties of the SDP
relaxation
• Alternative way of
deriving the SDP
relaxation
• Goemans and
Williamson algorithm

• Performance of the
algorithm

• Nonlinear
reformulation of max cut
I
• Nonlinear
reformulation of max cut
II

• Nesterov’s result

Bibliography

12 / 16

1. The expected value of the produced cut is:

E[W ] =
∑

i<j

wij

arcos(vT
i vj)

π

2. Assume wij ≥ 0. Then E(W ) ≥ α 1
2

∑

i<j wij(1 − vT
i vj), with

α = min
0≤θ≤π

2

π

θ

1 − cos(θ)
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1. The expected value of the produced cut is:

E[W ] =
∑

i<j

wij

arcos(vT
i vj)

π

2. Assume wij ≥ 0. Then E(W ) ≥ α 1
2

∑

i<j wij(1 − vT
i vj), with

α = min
0≤θ≤π

2

π

θ

1 − cos(θ)

3. α > 0.87856

4. Assume wij ≥ 0. Then
z∗

MC

z∗

MC
−z∗

SDP

> 0.87856

5. Note that there is no polynomial approximation algorithm with constant
< 0.9412 unless P=NP [Hästad 1997] .
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The max cut problem is equivalent to

max〈Cσ(V u), σ(V u)〉
‖vi‖ = 1 i = 1, . . . , n

‖u‖ = 1

where for any a ∈ R
n, σ(a) = sgn(a), and V =







vT
1
...

vT
n
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max〈Cσ(V u), σ(V u)〉
‖vi‖ = 1 i = 1, . . . , n

‖u‖ = 1

where for any a ∈ R
n, σ(a) = sgn(a), and V =







vT
1
...

vT
n







It is also equivalent to

max Eu(〈Cσ(V u), σ(V u)〉)
‖vi‖ = 1 i = 1, . . . , n
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The max cut problem can be rewritten as

max
2

π
〈C, arcsin(X)〉

diag(X) = e

X � 0



Nonlinear reformulation of max cut II

Introduction

An application in
statistical physics

The Goemans and
Williamson algorithm

• Relaxation
• Properties of the SDP
relaxation
• Alternative way of
deriving the SDP
relaxation
• Goemans and
Williamson algorithm

• Performance of the
algorithm

• Nonlinear
reformulation of max cut
I
• Nonlinear
reformulation of max cut
II

• Nesterov’s result

Bibliography

14 / 16

The max cut problem can be rewritten as

max
2

π
〈C, arcsin(X)〉

diag(X) = e

X � 0

Sketch of the proof: Choose V = X
1
2 . Then we need to prove

Eu(〈Cσ(V u), σ(V u)〉) =
2

π
〈C, arcsin(X)〉
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If C � 0, then
z∗MC

z∗MC − z∗SDP

>
2

π
= 0.6366
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If C � 0, then
z∗MC

z∗MC − z∗SDP

>
2

π
= 0.6366

Define X◦k = X ◦ X◦(k−1) and consider that

arcsin(X) = X +
1

2

X◦3

3
+

1 · 3

2 · 4

X◦5

5
+ . . .

and −1 ≤ Xij ≤ 1 then arcsin(X) − X � 0. Since C � 0, we get

2

π
〈C, arcsin(X) − X〉 ≥ 0

and hence

z∗MC ≥
2

π
〈C, arcsin(X)〉 ≥

2

π
〈C, X〉 =

2

π
z∗SDP ≥

2

π
z∗MC .
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