
1 / 36

SpeeDP: a fast method for solving the SDP relaxation of Max Cu t

Veronica Piccialli∗

Joint work with Luigi Grippo†, Laura Palagi†, Mauro Piacentini†, Giovanni Rinaldi‡

ESI 2010-Klagenfurt

∗University of Rome Tor Vergata
†DIS-Sapienza University of Rome
‡IASI-CNR

LRSDP relaxation

Introduction

• LRSDP relaxation

• Relaxations

Optimality conditions

A general algorithm

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

2 / 36

min 〈Q, X〉
diag(X) = e
X � 0, X ∈ Sn

(SDPMC)

LRSDP relaxation

Introduction

• LRSDP relaxation

• Relaxations

Optimality conditions

A general algorithm

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

2 / 36

min 〈Q, X〉
diag(X) = e
X � 0, X ∈ Sn

(SDPMC)

X ∈ Sn, X � 0, X of rank r if and only if X = V V T where
V = [v1 . . . vn]T ∈ R

n×r

LRSDP relaxation

Introduction

• LRSDP relaxation

• Relaxations

Optimality conditions

A general algorithm

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

2 / 36

min 〈Q, X〉
diag(X) = e
X � 0, X ∈ Sn

(SDPMC)

X ∈ Sn, X � 0, X of rank r if and only if X = V V T where
V = [v1 . . . vn]T ∈ R

n×r

If there exists a solution of problem (SDPMC) of rank r, a global solution of
problem

min qr(V) := 〈Q, V V T 〉
〈Eii, V V T 〉 = 1, i = 1, . . . , n, V ∈ R

n×r

gives a solution of Problem (SDPMC) .

LRSDP relaxation

Introduction

• LRSDP relaxation

• Relaxations

Optimality conditions

A general algorithm

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

2 / 36

min 〈Q, X〉
diag(X) = e
X � 0, X ∈ Sn

(SDPMC)

X ∈ Sn, X � 0, X of rank r if and only if X = V V T where
V = [v1 . . . vn]T ∈ R

n×r

If there exists a solution of problem (SDPMC) of rank r, a global solution of
problem

min qr(V) := 〈Q, V V T 〉
〈Eii, V V T 〉 = 1, i = 1, . . . , n, V ∈ R

n×r

gives a solution of Problem (SDPMC) .
[Barvinok 95, Pataki] there exists an X ∈ Sn optimal solution of (SDPMC) with
rank r satisfying the inequality r(r + 1)/2 ≤ n.

LRSDP relaxation

Introduction

• LRSDP relaxation

• Relaxations

Optimality conditions

A general algorithm

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

2 / 36

min 〈Q, X〉
diag(X) = e
X � 0, X ∈ Sn

(SDPMC)

X ∈ Sn, X � 0, X of rank r if and only if X = V V T where
V = [v1 . . . vn]T ∈ R

n×r

If there exists a solution of problem (SDPMC) of rank r, a global solution of
problem

min qr(V) := 〈Q, V V T 〉
〈Eii, V V T 〉 = 1, i = 1, . . . , n, V ∈ R

n×r

gives a solution of Problem (SDPMC) .
[Barvinok 95, Pataki] there exists an X ∈ Sn optimal solution of (SDPMC) with
rank r satisfying the inequality r(r + 1)/2 ≤ n.

r̂ = max{k ∈ N : k(k + 1)/2 ≤ n} =
⌊√

1+8n−1
2

⌋
computable upper bound

on r

Relaxations

Introduction

• LRSDP relaxation

• Relaxations

Optimality conditions

A general algorithm

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

3 / 36

(NLPr)

q∗r (V) = min 〈Q, V V T 〉

〈Eii, V V T 〉 = 1 i = 1, . . . , n,
V ∈ R

n×r

Relaxations

Introduction

• LRSDP relaxation

• Relaxations

Optimality conditions

A general algorithm

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

3 / 36

(NLPr)

q∗r (V) = min 〈Q, V V T 〉

〈Eii, V V T 〉 = 1 i = 1, . . . , n,
V ∈ R

n×r

When r = 1,
min xT Qx

xT Eiix = x2
i = 1 i = 1, . . . , n,

(NLP1)

Relaxations

Introduction

• LRSDP relaxation

• Relaxations

Optimality conditions

A general algorithm

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

3 / 36

(NLPr)

q∗r (V) = min 〈Q, V V T 〉

〈Eii, V V T 〉 = 1 i = 1, . . . , n,
V ∈ R

n×r

When r = 1,
min xT Qx

xT Eiix = x2
i = 1 i = 1, . . . , n,

(NLP1)
=(MC)

Relaxations

Introduction

• LRSDP relaxation

• Relaxations

Optimality conditions

A general algorithm

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

3 / 36

(NLPr)

q∗r (V) = min 〈Q, V V T 〉

〈Eii, V V T 〉 = 1 i = 1, . . . , n,
V ∈ R

n×r

When r = 1,
min xT Qx

xT Eiix = x2
i = 1 i = 1, . . . , n,

(NLP1)
=(MC)

q∗r ≤ q∗1 := z∗MC.

Relaxations

Introduction

• LRSDP relaxation

• Relaxations

Optimality conditions

A general algorithm

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

3 / 36

(NLPr)

q∗r (V) = min 〈Q, V V T 〉

〈Eii, V V T 〉 = 1 i = 1, . . . , n,
V ∈ R

n×r

When r = 1,
min xT Qx

xT Eiix = x2
i = 1 i = 1, . . . , n,

(NLP1)
=(MC)

q∗r ≤ q∗1 := z∗MC.

the feasible region is enlarging

Relaxations

Introduction

• LRSDP relaxation

• Relaxations

Optimality conditions

A general algorithm

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

3 / 36

(NLPr)

q∗r (V) = min 〈Q, V V T 〉

〈Eii, V V T 〉 = 1 i = 1, . . . , n,
V ∈ R

n×r

When r = 1,
min xT Qx

xT Eiix = x2
i = 1 i = 1, . . . , n,

(NLP1)
=(MC)

q∗r ≤ q∗1 := z∗MC.

the feasible region is enlarging

(SDPMC)

z∗SDP = min〈Q, X〉
diag(X) = e
X � 0, X ∈ Sn

Relaxations

Introduction

• LRSDP relaxation

• Relaxations

Optimality conditions

A general algorithm

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

3 / 36

(NLPr)

q∗r (V) = min 〈Q, V V T 〉

〈Eii, V V T 〉 = 1 i = 1, . . . , n,
V ∈ R

n×r

When r = 1,
min xT Qx

xT Eiix = x2
i = 1 i = 1, . . . , n,

(NLP1)
=(MC)

q∗r ≤ q∗1 := z∗MC.

the feasible region is enlarging

(SDPMC)

z∗SDP = min〈Q, X〉
diag(X) = e
X � 0, X ∈ Sn

z∗SDP := q∗n := q∗
br := q∗rmin

≤

A NS G.O. condition

Introduction

Optimality conditions

• A NS G.O. condition

A general algorithm

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

4 / 36

Proposition [Grippo, Palagi, P. 09] A point V ∗ ∈ R
n×r is a global minimizer of Problem

(NLPr) that solves Problem (SDPMC) if and only if there exists a λ∗ ∈ R
n such that

(Q + Λ∗) V ∗ = 0
Q + Λ∗ � 0
〈Eii, V

∗〉 = 1, i = 1, . . . , n.

(1)

A NS G.O. condition

Introduction

Optimality conditions

• A NS G.O. condition

A general algorithm

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

4 / 36

Proposition [Grippo, Palagi, P. 09] A point V ∗ ∈ R
n×r is a global minimizer of Problem

(NLPr) that solves Problem (SDPMC) if and only if there exists a λ∗ ∈ R
n such that

(Q + Λ∗) V ∗ = 0
Q + Λ∗ � 0
〈Eii, V

∗〉 = 1, i = 1, . . . , n.

(1)

The Lagrange multiplier associated to the solution of Problem (NLPr) is a solution of the
dual of problem (SDPMC).

A NS G.O. condition

Introduction

Optimality conditions

• A NS G.O. condition

A general algorithm

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

4 / 36

Proposition [Grippo, Palagi, P. 09] A point V ∗ ∈ R
n×r is a global minimizer of Problem

(NLPr) that solves Problem (SDPMC) if and only if there exists a λ∗ ∈ R
n such that

(Q + Λ∗) V ∗ = 0
Q + Λ∗ � 0
〈Eii, V

∗〉 = 1, i = 1, . . . , n.

(1)

The Lagrange multiplier associated to the solution of Problem (NLPr) is a solution of the
dual of problem (SDPMC).
There is a closed form for computing the multiplier given a KKT point:

A NS G.O. condition

Introduction

Optimality conditions

• A NS G.O. condition

A general algorithm

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

4 / 36

Proposition [Grippo, Palagi, P. 09] A point V ∗ ∈ R
n×r is a global minimizer of Problem

(NLPr) that solves Problem (SDPMC) if and only if there exists a λ∗ ∈ R
n such that

(Q + Λ∗) V ∗ = 0
Q + Λ∗ � 0
〈Eii, V

∗〉 = 1, i = 1, . . . , n.

(1)

The Lagrange multiplier associated to the solution of Problem (NLPr) is a solution of the
dual of problem (SDPMC).
There is a closed form for computing the multiplier given a KKT point:

⋄ λ̂i = −〈EiiQ, V̂ V̂ T 〉, i = 1, . . . , n

A NS G.O. condition

Introduction

Optimality conditions

• A NS G.O. condition

A general algorithm

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

4 / 36

Proposition [Grippo, Palagi, P. 09] A point V ∗ ∈ R
n×r is a global minimizer of Problem

(NLPr) that solves Problem (SDPMC) if and only if there exists a λ∗ ∈ R
n such that

(Q + Λ∗) V ∗ = 0
Q + Λ∗ � 0
〈Eii, V

∗〉 = 1, i = 1, . . . , n.

(1)

The Lagrange multiplier associated to the solution of Problem (NLPr) is a solution of the
dual of problem (SDPMC).
There is a closed form for computing the multiplier given a KKT point:

⋄ λ̂i = −〈EiiQ, V̂ V̂ T 〉, i = 1, . . . , n

⋄

n
X

i=1

λ̂i = e
T
λ = −〈Q, V̂ V̂

T 〉 = −qr(V̂)

The closed expression of the multiplier can be generalized for problems satisfying
AiAj = 0[JourneèBachAbsilSepulchre08]

A general algorithmic approach

Introduction

Optimality conditions

A general algorithm

• A general algorithmic
approach

• Unconstrained
formulations for (NLPr)

• Quotient function

• Quotient function II

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

5 / 36

ri

Find KKT
of (NLP)r

V̂ , λ̂ = λ(V̂)

Q + Diag(λ̂) �

0 ?
X∗ = V̂ T V̂

ri = n ?

ri+1 > ri

yes

no

no

yes

A general algorithmic approach

Introduction

Optimality conditions

A general algorithm

• A general algorithmic
approach

• Unconstrained
formulations for (NLPr)

• Quotient function

• Quotient function II

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

5 / 36

ri

Find KKT
of (NLP)r

V̂ , λ̂ = λ(V̂)

Q + Diag(λ̂) �

0 ?
X∗ = V̂ T V̂

ri = n ?

ri+1 > ri

yes

no

no

yes

Computational evidence: r∗ << n

A general algorithmic approach

Introduction

Optimality conditions

A general algorithm

• A general algorithmic
approach

• Unconstrained
formulations for (NLPr)

• Quotient function

• Quotient function II

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

5 / 36

ri

Find KKT
of (NLP)r

V̂ , λ̂ = λ(V̂)

Q + Diag(λ̂) �

0 ?
X∗ = V̂ T V̂

ri = n ?

ri+1 > ri

yes

no

no

yes

Computational evidence: r∗ << n

Inner problem solution: transform
the constrained problem into an
unconstrained one

A general algorithmic approach

Introduction

Optimality conditions

A general algorithm

• A general algorithmic
approach

• Unconstrained
formulations for (NLPr)

• Quotient function

• Quotient function II

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

5 / 36

ri

Find KKT
of (NLP)r

V̂ , λ̂ = λ(V̂)

Q + Diag(λ̂) �

0 ?
X∗ = V̂ T V̂

ri = n ?

ri+1 > ri

yes

no

no

yes

Computational evidence: r∗ << n

Inner problem solution: transform
the constrained problem into an
unconstrained one

Global condition: find the minimum
eigenvalue of Q + Diag(λ̂)

Unconstrained formulations for (NLP r)

Introduction

Optimality conditions

A general algorithm

• A general algorithmic
approach

• Unconstrained
formulations for (NLPr)

• Quotient function

• Quotient function II

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

6 / 36

Augmented Lagrangian [Burer-Monteiro, 2003]

min
V

La(V, λk, ǫk) = L(V, λk) +
1

ǫk

n∑

i

(
〈Eii, V V T 〉 − 1

)2

for a sequence {λk, ǫk}, ǫk → 0

Unconstrained formulations for (NLP r)

Introduction

Optimality conditions

A general algorithm

• A general algorithmic
approach

• Unconstrained
formulations for (NLPr)

• Quotient function

• Quotient function II

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

6 / 36

Augmented Lagrangian [Burer-Monteiro, 2003]

min
V

La(V, λk, ǫk) = L(V, λk) +
1

ǫk

n∑

i

(
〈Eii, V V T 〉 − 1

)2

for a sequence {λk, ǫk}, ǫk → 0
Exact Penalty Function [Grippo-Palagi-P., 2009]

min
v

Pǫ(V) = L(V, λ(V)) +
1

ǫ

∑

i

(
〈Eii, V V T 〉 − 1

)2

where λ(V) is the closed-form expression and ǫ > 0 is suff. small

Unconstrained formulations for (NLP r)

Introduction

Optimality conditions

A general algorithm

• A general algorithmic
approach

• Unconstrained
formulations for (NLPr)

• Quotient function

• Quotient function II

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

6 / 36

Augmented Lagrangian [Burer-Monteiro, 2003]

min
V

La(V, λk, ǫk) = L(V, λk) +
1

ǫk

n∑

i

(
〈Eii, V V T 〉 − 1

)2

for a sequence {λk, ǫk}, ǫk → 0
Exact Penalty Function [Grippo-Palagi-P., 2009]

min
v

Pǫ(V) = L(V, λ(V)) +
1

ǫ

∑

i

(
〈Eii, V V T 〉 − 1

)2

where λ(V) is the closed-form expression and ǫ > 0 is suff. small
Quotient-Type Function : using the change of variables
Xij = (vi/‖vi‖)

T vj/‖vj‖, vi ∈ R
r, i = 1, . . . , n (note :V = (v1 . . . vn)T)

min
v

∑

i, j

qij

vT
i vj

‖vi‖‖vj‖

Quotient function

Introduction

Optimality conditions

A general algorithm

• A general algorithmic
approach

• Unconstrained
formulations for (NLPr)

• Quotient function

• Quotient function II

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

7 / 36

[Burer-Monteiro, 2003]

min
v

qr(v) =
∑

i, j

qij

vT
i vj

‖vi‖‖vj‖

Quotient function

Introduction

Optimality conditions

A general algorithm

• A general algorithmic
approach

• Unconstrained
formulations for (NLPr)

• Quotient function

• Quotient function II

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

7 / 36

[Burer-Monteiro, 2003]

min
v

qr(v) =
∑

i, j

qij

vT
i vj

‖vi‖‖vj‖

⋄ Remark: proposed originally in [Homer-Peinado, 1997] for r = n

Quotient function

Introduction

Optimality conditions

A general algorithm

• A general algorithmic
approach

• Unconstrained
formulations for (NLPr)

• Quotient function

• Quotient function II

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

7 / 36

[Burer-Monteiro, 2003]

min
v

qr(v) =
∑

i, j

qij

vT
i vj

‖vi‖‖vj‖

⋄ Remark: proposed originally in [Homer-Peinado, 1997] for r = n

⋄ Very efficient in practice

Quotient function

Introduction

Optimality conditions

A general algorithm

• A general algorithmic
approach

• Unconstrained
formulations for (NLPr)

• Quotient function

• Quotient function II

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

7 / 36

[Burer-Monteiro, 2003]

min
v

qr(v) =
∑

i, j

qij

vT
i vj

‖vi‖‖vj‖

⋄ Remark: proposed originally in [Homer-Peinado, 1997] for r = n

⋄ Very efficient in practice

⋄ Some drawbacks in using this formulation

Quotient function

Introduction

Optimality conditions

A general algorithm

• A general algorithmic
approach

• Unconstrained
formulations for (NLPr)

• Quotient function

• Quotient function II

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

7 / 36

[Burer-Monteiro, 2003]

min
v

qr(v) =
∑

i, j

qij

vT
i vj

‖vi‖‖vj‖

⋄ Remark: proposed originally in [Homer-Peinado, 1997] for r = n

⋄ Very efficient in practice

⋄ Some drawbacks in using this formulation

1. No proof on the correspondence of stationary points/local
minima/global minima with stationary points/local minima/global
minima of (NLP)r

Quotient function

Introduction

Optimality conditions

A general algorithm

• A general algorithmic
approach

• Unconstrained
formulations for (NLPr)

• Quotient function

• Quotient function II

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

7 / 36

[Burer-Monteiro, 2003]

min
v

qr(v) =
∑

i, j

qij

vT
i vj

‖vi‖‖vj‖

⋄ Remark: proposed originally in [Homer-Peinado, 1997] for r = n

⋄ Very efficient in practice

⋄ Some drawbacks in using this formulation

1. No proof on the correspondence of stationary points/local
minima/global minima with stationary points/local minima/global
minima of (NLP)r

2. not defined if any vi = 0

Quotient function

Introduction

Optimality conditions

A general algorithm

• A general algorithmic
approach

• Unconstrained
formulations for (NLPr)

• Quotient function

• Quotient function II

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

7 / 36

[Burer-Monteiro, 2003]

min
v

qr(v) =
∑

i, j

qij

vT
i vj

‖vi‖‖vj‖

⋄ Remark: proposed originally in [Homer-Peinado, 1997] for r = n

⋄ Very efficient in practice

⋄ Some drawbacks in using this formulation

1. No proof on the correspondence of stationary points/local
minima/global minima with stationary points/local minima/global
minima of (NLP)r

2. not defined if any vi = 0

3. unbounded level sets of qr(v)

Quotient function II

Introduction

Optimality conditions

A general algorithm

• A general algorithmic
approach

• Unconstrained
formulations for (NLPr)

• Quotient function

• Quotient function II

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

8 / 36

We solved the first two drawbacks:

Quotient function II

Introduction

Optimality conditions

A general algorithm

• A general algorithmic
approach

• Unconstrained
formulations for (NLPr)

• Quotient function

• Quotient function II

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

8 / 36

We solved the first two drawbacks:

1. We proved that given any stationary points/local minima/global minima
v = (vT

1 , . . . , vT
n)T of the quotient function, the corresponding point

v = (vT
1 /‖v1‖, . . . , v

T
n /‖vn‖)

T is a stationary point/local
minimum/global minimum of (NLP)r

Quotient function II

Introduction

Optimality conditions

A general algorithm

• A general algorithmic
approach

• Unconstrained
formulations for (NLPr)

• Quotient function

• Quotient function II

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

8 / 36

We solved the first two drawbacks:

1. We proved that given any stationary points/local minima/global minima
v = (vT

1 , . . . , vT
n)T of the quotient function, the corresponding point

v = (vT
1 /‖v1‖, . . . , v

T
n /‖vn‖)

T is a stationary point/local
minimum/global minimum of (NLP)r

2. The quotient function is not defined if any vi = 0, but any gradient type
method ensures vk

i away from 0

Quotient function II

Introduction

Optimality conditions

A general algorithm

• A general algorithmic
approach

• Unconstrained
formulations for (NLPr)

• Quotient function

• Quotient function II

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

8 / 36

We solved the first two drawbacks:

1. We proved that given any stationary points/local minima/global minima
v = (vT

1 , . . . , vT
n)T of the quotient function, the corresponding point

v = (vT
1 /‖v1‖, . . . , v

T
n /‖vn‖)

T is a stationary point/local
minimum/global minimum of (NLP)r

2. The quotient function is not defined if any vi = 0, but any gradient type
method ensures vk

i away from 0

3. However, it has unbounded level sets, so that standard convergence theory
does not apply

A new unconstrained formulation of problem (NLP r)

Introduction

Optimality conditions

A general algorithm

SpeeDP

• A new unconstrained
formulation of problem
(NLPr)

• Properties of problem
(RQr)

• A specific algorithm
for problem (RQr) I

• A specific algorithm
for problem (RQr) II

• Convergence result

• SpeeDP

• Some Remarks

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

9 / 36

We propose a modification of function qr(v):

fǫ(v) :=
∑

i, j

qij

vT
i vj

‖vi‖‖vj‖
+

1

ǫ

n∑

i=1

(‖vi‖
2 − 1)2

d(vi)
,

where ε > 0 and

d(vi) := δ2 −
(
1 − ‖vi‖

2
)2

+
, 0 < δ < 1.

A new unconstrained formulation of problem (NLP r)

Introduction

Optimality conditions

A general algorithm

SpeeDP

• A new unconstrained
formulation of problem
(NLPr)

• Properties of problem
(RQr)

• A specific algorithm
for problem (RQr) I

• A specific algorithm
for problem (RQr) II

• Convergence result

• SpeeDP

• Some Remarks

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

9 / 36

We propose a modification of function qr(v):

fǫ(v) :=
∑

i, j

qij

vT
i vj

‖vi‖‖vj‖
+

1

ǫ

n∑

i=1

(‖vi‖
2 − 1)2

d(vi)
,

where ε > 0 and

d(vi) := δ2 −
(
1 − ‖vi‖

2
)2

+
, 0 < δ < 1.

For a fixed ε > 0 we consider the unconstrained minimization problem

min
v∈Sδ

fǫ(v), (RQr)

where the open set Sδ is defined as

Sδ := {v ∈ R
nr : ‖vi‖

2 > 1 − δ, i = 1, . . . , n}.

Properties of problem (RQ r)

Introduction

Optimality conditions

A general algorithm

SpeeDP

• A new unconstrained
formulation of problem
(NLPr)

• Properties of problem
(RQr)

• A specific algorithm
for problem (RQr) I

• A specific algorithm
for problem (RQr) II

• Convergence result

• SpeeDP

• Some Remarks

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

10 / 36

min fǫ(v), min〈Q, V V T 〉
v ∈ Sδ (RQr) 〈Eii, V V T 〉 = 1, i = 1, . . . , n (NLPr)
vi ∈ ℜr i = 1, . . . , n V ∈ R

n×r

1. For any v0 ∈ Sδ , function fǫ(v) has compact level sets

Properties of problem (RQ r)

Introduction

Optimality conditions

A general algorithm

SpeeDP

• A new unconstrained
formulation of problem
(NLPr)

• Properties of problem
(RQr)

• A specific algorithm
for problem (RQr) I

• A specific algorithm
for problem (RQr) II

• Convergence result

• SpeeDP

• Some Remarks

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

10 / 36

min fǫ(v), min〈Q, V V T 〉
v ∈ Sδ (RQr) 〈Eii, V V T 〉 = 1, i = 1, . . . , n (NLPr)
vi ∈ ℜr i = 1, . . . , n V ∈ R

n×r

1. For any v0 ∈ Sδ , function fǫ(v) has compact level sets

2. For any ǫ > 0:

Properties of problem (RQ r)

Introduction

Optimality conditions

A general algorithm

SpeeDP

• A new unconstrained
formulation of problem
(NLPr)

• Properties of problem
(RQr)

• A specific algorithm
for problem (RQr) I

• A specific algorithm
for problem (RQr) II

• Convergence result

• SpeeDP

• Some Remarks

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

10 / 36

min fǫ(v), min〈Q, V V T 〉
v ∈ Sδ (RQr) 〈Eii, V V T 〉 = 1, i = 1, . . . , n (NLPr)
vi ∈ ℜr i = 1, . . . , n V ∈ R

n×r

1. For any v0 ∈ Sδ , function fǫ(v) has compact level sets

2. For any ǫ > 0:

⋄ stationary point of (RQr) ⇔ stationary point of (NLPr)

⋄ local minimum point of (RQr) ⇔ local minimum point of (NLPr)

⋄ global minimum point of (RQr) ⇔ global minimum point of (NLPr)

Properties of problem (RQ r)

Introduction

Optimality conditions

A general algorithm

SpeeDP

• A new unconstrained
formulation of problem
(NLPr)

• Properties of problem
(RQr)

• A specific algorithm
for problem (RQr) I

• A specific algorithm
for problem (RQr) II

• Convergence result

• SpeeDP

• Some Remarks

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

10 / 36

min fǫ(v), min〈Q, V V T 〉
v ∈ Sδ (RQr) 〈Eii, V V T 〉 = 1, i = 1, . . . , n (NLPr)
vi ∈ ℜr i = 1, . . . , n V ∈ R

n×r

1. For any v0 ∈ Sδ , function fǫ(v) has compact level sets

2. For any ǫ > 0:

⋄ stationary point of (RQr) ⇔ stationary point of (NLPr)

⋄ local minimum point of (RQr) ⇔ local minimum point of (NLPr)

⋄ global minimum point of (RQr) ⇔ global minimum point of (NLPr)

Problem (NLPr) can be solved by solving problem (RQr) by any standard
minimization algorithm

A specific algorithm for problem (RQ r) I

Introduction

Optimality conditions

A general algorithm

SpeeDP

• A new unconstrained
formulation of problem
(NLPr)

• Properties of problem
(RQr)

• A specific algorithm
for problem (RQr) I

• A specific algorithm
for problem (RQr) II

• Convergence result

• SpeeDP

• Some Remarks

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

11 / 36

min
∑

i, j qij
vT

i vj

‖vi‖‖vj‖ + 1
ǫ

∑n
i=1

(‖vi‖2−1)2

d(vi)

v ∈ Sδ (RQr)
vi ∈ ℜr i = 1, . . . , n

The barrier term d(vi) := δ2 −
(
1 − ‖vi‖

2
)2

+
, 0 < δ < 1 plays a key role to

make standard optimization method be globally convergent for problem (RQr).

A specific algorithm for problem (RQ r) I

Introduction

Optimality conditions

A general algorithm

SpeeDP

• A new unconstrained
formulation of problem
(NLPr)

• Properties of problem
(RQr)

• A specific algorithm
for problem (RQr) I

• A specific algorithm
for problem (RQr) II

• Convergence result

• SpeeDP

• Some Remarks

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

11 / 36

min
∑

i, j qij
vT

i vj

‖vi‖‖vj‖ + 1
ǫ

∑n
i=1

(‖vi‖2−1)2

d(vi)

v ∈ Sδ (RQr)
vi ∈ ℜr i = 1, . . . , n

The barrier term d(vi) := δ2 −
(
1 − ‖vi‖

2
)2

+
, 0 < δ < 1 plays a key role to

make standard optimization method be globally convergent for problem (RQr).

Nevertheless, a barrier term affects negatively the performance behavior of any
optimization method, especially when the produced sequence gets closer to the
boundary of Sδ .

A specific algorithm for problem (RQ r) II

Introduction

Optimality conditions

A general algorithm

SpeeDP

• A new unconstrained
formulation of problem
(NLPr)

• Properties of problem
(RQr)

• A specific algorithm
for problem (RQr) I

• A specific algorithm
for problem (RQr) II

• Convergence result

• SpeeDP

• Some Remarks

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

12 / 36

min
∑

i, j qij
vT

i vj

‖vi‖‖vj‖ + 1
ǫ

∑n
i=1

(‖vi‖2−1)2

d(vi)

v ∈ Sδ (RQr)
vi ∈ ℜr i = 1, . . . , n

Consider a gradient type iteration, starting from v0 such that ‖v0
i ‖ = 1 for

i = 1, . . . , n:
vk+1

i = vk
i − αk∇vi

fε(v
k) i = 1, . . . , n

where αk > 0 is obtained by a suitable linesearch procedure satisfying at least

fε(v
k+1) ≤ fε(v

0).

A specific algorithm for problem (RQ r) II

Introduction

Optimality conditions

A general algorithm

SpeeDP

• A new unconstrained
formulation of problem
(NLPr)

• Properties of problem
(RQr)

• A specific algorithm
for problem (RQr) I

• A specific algorithm
for problem (RQr) II

• Convergence result

• SpeeDP

• Some Remarks

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

12 / 36

min
∑

i, j qij
vT

i vj

‖vi‖‖vj‖ + 1
ǫ

∑n
i=1

(‖vi‖2−1)2

d(vi)

v ∈ Sδ (RQr)
vi ∈ ℜr i = 1, . . . , n

Consider a gradient type iteration, starting from v0 such that ‖v0
i ‖ = 1 for

i = 1, . . . , n:
vk+1

i = vk
i − αk∇vi

fε(v
k) i = 1, . . . , n

where αk > 0 is obtained by a suitable linesearch procedure satisfying at least

fε(v
k+1) ≤ fε(v

0).

Then, there exists ǭ > 0 such that, for any ǫ ≥ ǭ, we have for k = 1, 2, . . .

‖vk
i ‖ ≥ 1, i = 1, . . . , n.

and hence d(vi) = δ2

Convergence result

Introduction

Optimality conditions

A general algorithm

SpeeDP

• A new unconstrained
formulation of problem
(NLPr)

• Properties of problem
(RQr)

• A specific algorithm
for problem (RQr) I

• A specific algorithm
for problem (RQr) II

• Convergence result

• SpeeDP

• Some Remarks

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

13 / 36

Let {vk} generated with a Gradient Method(Non-Monotone), starting from v0

such that ‖v0
i ‖ = 1 for i = 1, . . . , n . Then, for ǫ ≥ ǭ

1. 1 ≤ ‖vk
i ‖

2 ≤ M with i = 1, . . . , n

Convergence result

Introduction

Optimality conditions

A general algorithm

SpeeDP

• A new unconstrained
formulation of problem
(NLPr)

• Properties of problem
(RQr)

• A specific algorithm
for problem (RQr) I

• A specific algorithm
for problem (RQr) II

• Convergence result

• SpeeDP

• Some Remarks

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

13 / 36

Let {vk} generated with a Gradient Method(Non-Monotone), starting from v0

such that ‖v0
i ‖ = 1 for i = 1, . . . , n . Then, for ǫ ≥ ǭ

1. 1 ≤ ‖vk
i ‖

2 ≤ M with i = 1, . . . , n

2. {vk} → v̂, with v̂ stationary point of (RQr), and hence of (NLP)r

Convergence result

Introduction

Optimality conditions

A general algorithm

SpeeDP

• A new unconstrained
formulation of problem
(NLPr)

• Properties of problem
(RQr)

• A specific algorithm
for problem (RQr) I

• A specific algorithm
for problem (RQr) II

• Convergence result

• SpeeDP

• Some Remarks

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

13 / 36

Let {vk} generated with a Gradient Method(Non-Monotone), starting from v0

such that ‖v0
i ‖ = 1 for i = 1, . . . , n . Then, for ǫ ≥ ǭ

1. 1 ≤ ‖vk
i ‖

2 ≤ M with i = 1, . . . , n

2. {vk} → v̂, with v̂ stationary point of (RQr), and hence of (NLP)r

We use a a Fortran 90 implementation of the non monotone Barzilai-Borwein
gradient method proposed in [Grippo, Sciandrone, COAP2002]

SpeeDP

Introduction

Optimality conditions

A general algorithm

SpeeDP

• A new unconstrained
formulation of problem
(NLPr)

• Properties of problem
(RQr)

• A specific algorithm
for problem (RQr) I

• A specific algorithm
for problem (RQr) II

• Convergence result

• SpeeDP

• Some Remarks

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

14 / 36

Data. Q ∈ Sn.

SpeeDP

Introduction

Optimality conditions

A general algorithm

SpeeDP

• A new unconstrained
formulation of problem
(NLPr)

• Properties of problem
(RQr)

• A specific algorithm
for problem (RQr) I

• A specific algorithm
for problem (RQr) II

• Convergence result

• SpeeDP

• Some Remarks

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

14 / 36

Data. Q ∈ Sn.

Inizialization. Compute r̂ =
⌊√

1+8n−1
2

⌋
. Set integers

2 ≤ r1 < r2 < · · · < rp with rp ∈ [r̂, n].

SpeeDP

Introduction

Optimality conditions

A general algorithm

SpeeDP

• A new unconstrained
formulation of problem
(NLPr)

• Properties of problem
(RQr)

• A specific algorithm
for problem (RQr) I

• A specific algorithm
for problem (RQr) II

• Convergence result

• SpeeDP

• Some Remarks

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

14 / 36

Data. Q ∈ Sn.

Inizialization. Compute r̂ =
⌊√

1+8n−1
2

⌋
. Set integers

2 ≤ r1 < r2 < · · · < rp with rp ∈ [r̂, n].

Step 1 Choose ε ≥ ε̄.

SpeeDP

Introduction

Optimality conditions

A general algorithm

SpeeDP

• A new unconstrained
formulation of problem
(NLPr)

• Properties of problem
(RQr)

• A specific algorithm
for problem (RQr) I

• A specific algorithm
for problem (RQr) II

• Convergence result

• SpeeDP

• Some Remarks

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

14 / 36

Data. Q ∈ Sn.

Inizialization. Compute r̂ =
⌊√

1+8n−1
2

⌋
. Set integers

2 ≤ r1 < r2 < · · · < rp with rp ∈ [r̂, n].

Step 1 Choose ε ≥ ε̄.

Step 2 Find a stationary point v̂ ∈ R
nrj

of problem (NLPrj) by applying the
Non-monotone gradient method to problem (RQrj) starting from a point
v0 ∈ R

nrj

with ‖v0
i ‖

2 = 1 for i = 1, . . . , n.

SpeeDP

Introduction

Optimality conditions

A general algorithm

SpeeDP

• A new unconstrained
formulation of problem
(NLPr)

• Properties of problem
(RQr)

• A specific algorithm
for problem (RQr) I

• A specific algorithm
for problem (RQr) II

• Convergence result

• SpeeDP

• Some Remarks

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

14 / 36

Data. Q ∈ Sn.

Inizialization. Compute r̂ =
⌊√

1+8n−1
2

⌋
. Set integers

2 ≤ r1 < r2 < · · · < rp with rp ∈ [r̂, n].

Step 1 Choose ε ≥ ε̄.

Step 2 Find a stationary point v̂ ∈ R
nrj

of problem (NLPrj) by applying the
Non-monotone gradient method to problem (RQrj) starting from a point
v0 ∈ R

nrj

with ‖v0
i ‖

2 = 1 for i = 1, . . . , n.

Step 3 Compute the minimum eigenvalue µmin(v̂) of Q + Diag(λ(v̂)). If

µmin(v̂) = 0 or j = p, then stop and return v̂ ∈ R
nrj

and µmin(v̂),
otherwise set j = j + 1, and go to Step 1.

Some Remarks

Introduction

Optimality conditions

A general algorithm

SpeeDP

• A new unconstrained
formulation of problem
(NLPr)

• Properties of problem
(RQr)

• A specific algorithm
for problem (RQr) I

• A specific algorithm
for problem (RQr) II

• Convergence result

• SpeeDP

• Some Remarks

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

15 / 36

⋄ If r = n problem (NLPr) has no local minimum points [M. Journee, F. Bach,

P.A. Absil, R. Sepulchre 2008]

Some Remarks

Introduction

Optimality conditions

A general algorithm

SpeeDP

• A new unconstrained
formulation of problem
(NLPr)

• Properties of problem
(RQr)

• A specific algorithm
for problem (RQr) I

• A specific algorithm
for problem (RQr) II

• Convergence result

• SpeeDP

• Some Remarks

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

15 / 36

⋄ If r = n problem (NLPr) has no local minimum points [M. Journee, F. Bach,

P.A. Absil, R. Sepulchre 2008]

⋄ In principle the algorithm may fail (also for r = n), since the problem we
are solving is a nonconvex one, and the algorithm produces only a
stationary point.

Some Remarks

Introduction

Optimality conditions

A general algorithm

SpeeDP

• A new unconstrained
formulation of problem
(NLPr)

• Properties of problem
(RQr)

• A specific algorithm
for problem (RQr) I

• A specific algorithm
for problem (RQr) II

• Convergence result

• SpeeDP

• Some Remarks

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

15 / 36

⋄ If r = n problem (NLPr) has no local minimum points [M. Journee, F. Bach,

P.A. Absil, R. Sepulchre 2008]

⋄ In principle the algorithm may fail (also for r = n), since the problem we
are solving is a nonconvex one, and the algorithm produces only a
stationary point.

⋄ In practice, it never happens.

Some Remarks

Introduction

Optimality conditions

A general algorithm

SpeeDP

• A new unconstrained
formulation of problem
(NLPr)

• Properties of problem
(RQr)

• A specific algorithm
for problem (RQr) I

• A specific algorithm
for problem (RQr) II

• Convergence result

• SpeeDP

• Some Remarks

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

15 / 36

⋄ If r = n problem (NLPr) has no local minimum points [M. Journee, F. Bach,

P.A. Absil, R. Sepulchre 2008]

⋄ In principle the algorithm may fail (also for r = n), since the problem we
are solving is a nonconvex one, and the algorithm produces only a
stationary point.

⋄ In practice, it never happens.

⋄ Given any λ ∈ ℜn the point u = λ + λmin(Q + Λ)e is feasible for
problem (DUALMC), and hence eT u = eT λ + nλmin(Q + Λ) is a bound
on the optimal value of (SDPMC).

Implementation

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

• Implementation

• Problems and
softwares

• Test Problems
• Performance
profile[DolanMorè02]

• Comparison with
other codes: cpu time

• Comparison with LR:
cpu time

• Comparison with
DSDP: accuracy

• Some considerations

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

16 / 36

We select the value r1 according to an heuristic based on n
n r1 br

≤ 200 8 ≤ 19
≥ 250,< 800 10 < 39
≥ 800,< 1000 15 < 44
≥ 1000,≤ 5000 18 < 99
> 5000,≤ 20000 25 ≥ 99

≥ 20000 30 ≥ 199

Implementation

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

• Implementation

• Problems and
softwares

• Test Problems
• Performance
profile[DolanMorè02]

• Comparison with
other codes: cpu time

• Comparison with LR:
cpu time

• Comparison with
DSDP: accuracy

• Some considerations

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

16 / 36

We select the value r1 according to an heuristic based on n
n r1 br

≤ 200 8 ≤ 19
≥ 250,< 800 10 < 39
≥ 800,< 1000 15 < 44
≥ 1000,≤ 5000 18 < 99
> 5000,≤ 20000 25 ≥ 99

≥ 20000 30 ≥ 199

we set ri+1 = min{1.5 ∗ ri, r̂}

Implementation

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

• Implementation

• Problems and
softwares

• Test Problems
• Performance
profile[DolanMorè02]

• Comparison with
other codes: cpu time

• Comparison with LR:
cpu time

• Comparison with
DSDP: accuracy

• Some considerations

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

16 / 36

We select the value r1 according to an heuristic based on n
n r1 br

≤ 200 8 ≤ 19
≥ 250,< 800 10 < 39
≥ 800,< 1000 15 < 44
≥ 1000,≤ 5000 18 < 99
> 5000,≤ 20000 25 ≥ 99

≥ 20000 30 ≥ 199

we set ri+1 = min{1.5 ∗ ri, r̂}

we set ε = 103

Implementation

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

• Implementation

• Problems and
softwares

• Test Problems
• Performance
profile[DolanMorè02]

• Comparison with
other codes: cpu time

• Comparison with LR:
cpu time

• Comparison with
DSDP: accuracy

• Some considerations

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

16 / 36

We select the value r1 according to an heuristic based on n
n r1 br

≤ 200 8 ≤ 19
≥ 250,< 800 10 < 39
≥ 800,< 1000 15 < 44
≥ 1000,≤ 5000 18 < 99
> 5000,≤ 20000 25 ≥ 99

≥ 20000 30 ≥ 199

we set ri+1 = min{1.5 ∗ ri, r̂}

we set ε = 103

we used the ARPACK subroutines for computing λmin(Q + Λ̄)

Problems and softwares

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

• Implementation

• Problems and
softwares

• Test Problems
• Performance
profile[DolanMorè02]

• Comparison with
other codes: cpu time

• Comparison with LR:
cpu time

• Comparison with
DSDP: accuracy

• Some considerations

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

17 / 36

We compare with

1. SDPLR-MC

[Burer, Monteiro]

Problems and softwares

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

• Implementation

• Problems and
softwares

• Test Problems
• Performance
profile[DolanMorè02]

• Comparison with
other codes: cpu time

• Comparison with LR:
cpu time

• Comparison with
DSDP: accuracy

• Some considerations

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

17 / 36

We compare with

1. SDPLR-MC

[Burer, Monteiro]

2. DSDP[Benson, Ye, Zhang]

Problems and softwares

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

• Implementation

• Problems and
softwares

• Test Problems
• Performance
profile[DolanMorè02]

• Comparison with
other codes: cpu time

• Comparison with LR:
cpu time

• Comparison with
DSDP: accuracy

• Some considerations

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

17 / 36

We compare with

1. SDPLR-MC

[Burer, Monteiro]

2. DSDP[Benson, Ye, Zhang]

3. EXPA

[Grippo, Palagi, P.]

Problems and softwares

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

• Implementation

• Problems and
softwares

• Test Problems
• Performance
profile[DolanMorè02]

• Comparison with
other codes: cpu time

• Comparison with LR:
cpu time

• Comparison with
DSDP: accuracy

• Some considerations

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

17 / 36

We compare with

1. SDPLR-MC

[Burer, Monteiro]

2. DSDP[Benson, Ye, Zhang]

3. EXPA

[Grippo, Palagi, P.]

4. SB: spectral bundle method
[Helmberg, Rendl]

Problems and softwares

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

• Implementation

• Problems and
softwares

• Test Problems
• Performance
profile[DolanMorè02]

• Comparison with
other codes: cpu time

• Comparison with LR:
cpu time

• Comparison with
DSDP: accuracy

• Some considerations

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

17 / 36

We compare with

1. SDPLR-MC

[Burer, Monteiro]

2. DSDP[Benson, Ye, Zhang]

3. EXPA

[Grippo, Palagi, P.]

4. SB: spectral bundle method
[Helmberg, Rendl]

• HEURISTIC: same idea as
SpeeDP, quotient uncon-
strained formulation solved
by L-BFGS; suitable for large
scale pb.

Problems and softwares

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

• Implementation

• Problems and
softwares

• Test Problems
• Performance
profile[DolanMorè02]

• Comparison with
other codes: cpu time

• Comparison with LR:
cpu time

• Comparison with
DSDP: accuracy

• Some considerations

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

17 / 36

We compare with

1. SDPLR-MC

[Burer, Monteiro]

2. DSDP[Benson, Ye, Zhang]

3. EXPA

[Grippo, Palagi, P.]

4. SB: spectral bundle method
[Helmberg, Rendl]

• HEURISTIC: same idea as
SpeeDP, quotient uncon-
strained formulation solved
by L-BFGS; suitable for large
scale pb.

• EXACT: dual interior point; up
to n = 7000 (25 pb.)

Problems and softwares

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

• Implementation

• Problems and
softwares

• Test Problems
• Performance
profile[DolanMorè02]

• Comparison with
other codes: cpu time

• Comparison with LR:
cpu time

• Comparison with
DSDP: accuracy

• Some considerations

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

17 / 36

We compare with

1. SDPLR-MC

[Burer, Monteiro]

2. DSDP[Benson, Ye, Zhang]

3. EXPA

[Grippo, Palagi, P.]

4. SB: spectral bundle method
[Helmberg, Rendl]

• HEURISTIC: same idea as
SpeeDP, quotient uncon-
strained formulation solved
by L-BFGS; suitable for large
scale pb.

• EXACT: dual interior point; up
to n = 7000 (25 pb.)

• same algorithmic idea of
SpeeDP but using an exact
penalty function (state of the
art)

Test Problems

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

• Implementation

• Problems and
softwares

• Test Problems
• Performance
profile[DolanMorè02]

• Comparison with
other codes: cpu time

• Comparison with LR:
cpu time

• Comparison with
DSDP: accuracy

• Some considerations

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

18 / 36

We used three test sets for max cut problems:

Test Problems

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

• Implementation

• Problems and
softwares

• Test Problems
• Performance
profile[DolanMorè02]

• Comparison with
other codes: cpu time

• Comparison with LR:
cpu time

• Comparison with
DSDP: accuracy

• Some considerations

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

18 / 36

We used three test sets for max cut problems:

1. SDPLIB (18 pb. with 100 ≤ n ≤ 7000, and number of edges ranging from 150 to
17000)

Test Problems

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

• Implementation

• Problems and
softwares

• Test Problems
• Performance
profile[DolanMorè02]

• Comparison with
other codes: cpu time

• Comparison with LR:
cpu time

• Comparison with
DSDP: accuracy

• Some considerations

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

18 / 36

We used three test sets for max cut problems:

1. SDPLIB (18 pb. with 100 ≤ n ≤ 7000, and number of edges ranging from 150 to
17000)

2. DIMACS (4 pb. two have 512 nodes with 1,536 edges and two have 3,375 nodes
with 10,125 edges)

Test Problems

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

• Implementation

• Problems and
softwares

• Test Problems
• Performance
profile[DolanMorè02]

• Comparison with
other codes: cpu time

• Comparison with LR:
cpu time

• Comparison with
DSDP: accuracy

• Some considerations

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

18 / 36

We used three test sets for max cut problems:

1. SDPLIB (18 pb. with 100 ≤ n ≤ 7000, and number of edges ranging from 150 to
17000)

2. DIMACS (4 pb. two have 512 nodes with 1,536 edges and two have 3,375 nodes
with 10,125 edges)

3. Gset: randomly generated by a machine-independent graph generator rudy (19 pb.
with 800 ≤ n ≤ 20000 and number of edges ranging from about 5,000 to 40,000)

Performance profile[DolanMor è02]

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

• Implementation

• Problems and
softwares

• Test Problems
• Performance
profile[DolanMorè02]

• Comparison with
other codes: cpu time

• Comparison with LR:
cpu time

• Comparison with
DSDP: accuracy

• Some considerations

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

19 / 36

We have a set of solvers S and a set of problems P . Let p ∈ P denote a
particular problem and s ∈ S a particular solver.

Performance profile[DolanMor è02]

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

• Implementation

• Problems and
softwares

• Test Problems
• Performance
profile[DolanMorè02]

• Comparison with
other codes: cpu time

• Comparison with LR:
cpu time

• Comparison with
DSDP: accuracy

• Some considerations

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

19 / 36

We have a set of solvers S and a set of problems P . Let p ∈ P denote a
particular problem and s ∈ S a particular solver.

The idea is to compare the performance of solver s on problem p with the best
performance by any solver on this particular problem by the performance ratio

rp,s =
tp,s

min{tp,s′ : s′ ∈ S}
,

where tp,s is the CPU time in seconds needed by solver s to solve problem p.

Performance profile[DolanMor è02]

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

• Implementation

• Problems and
softwares

• Test Problems
• Performance
profile[DolanMorè02]

• Comparison with
other codes: cpu time

• Comparison with LR:
cpu time

• Comparison with
DSDP: accuracy

• Some considerations

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

19 / 36

We have a set of solvers S and a set of problems P . Let p ∈ P denote a
particular problem and s ∈ S a particular solver.

The idea is to compare the performance of solver s on problem p with the best
performance by any solver on this particular problem by the performance ratio

rp,s =
tp,s

min{tp,s′ : s′ ∈ S}
,

where tp,s is the CPU time in seconds needed by solver s to solve problem p.

A cumulative distribution function ρs(τ) is defined as:

ρs(τ) =
1

np

size{p ∈ P : rp,s ≤ τ}.

Performance profile[DolanMor è02]

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

• Implementation

• Problems and
softwares

• Test Problems
• Performance
profile[DolanMorè02]

• Comparison with
other codes: cpu time

• Comparison with LR:
cpu time

• Comparison with
DSDP: accuracy

• Some considerations

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

19 / 36

We have a set of solvers S and a set of problems P . Let p ∈ P denote a
particular problem and s ∈ S a particular solver.

The idea is to compare the performance of solver s on problem p with the best
performance by any solver on this particular problem by the performance ratio

rp,s =
tp,s

min{tp,s′ : s′ ∈ S}
,

where tp,s is the CPU time in seconds needed by solver s to solve problem p.

A cumulative distribution function ρs(τ) is defined as:

ρs(τ) =
1

np

size{p ∈ P : rp,s ≤ τ}.

We draw ρs(τ) with respect to τ , that is reported on the x-axis in a logarithmic
scale.

Performance profile[DolanMor è02]

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

• Implementation

• Problems and
softwares

• Test Problems
• Performance
profile[DolanMorè02]

• Comparison with
other codes: cpu time

• Comparison with LR:
cpu time

• Comparison with
DSDP: accuracy

• Some considerations

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

19 / 36

We have a set of solvers S and a set of problems P . Let p ∈ P denote a
particular problem and s ∈ S a particular solver.

The idea is to compare the performance of solver s on problem p with the best
performance by any solver on this particular problem by the performance ratio

rp,s =
tp,s

min{tp,s′ : s′ ∈ S}
,

where tp,s is the CPU time in seconds needed by solver s to solve problem p.

A cumulative distribution function ρs(τ) is defined as:

ρs(τ) =
1

np

size{p ∈ P : rp,s ≤ τ}.

We draw ρs(τ) with respect to τ , that is reported on the x-axis in a logarithmic
scale.

The higher the method the better, and the efficiency is measured by how fast the
method reaches the value of 1 (since all the methods solve all the problems, all
the methods reach the performance value 1 allowing a sufficiently large τ).

Comparison with other codes: cpu time

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

• Implementation

• Problems and
softwares

• Test Problems
• Performance
profile[DolanMorè02]

• Comparison with
other codes: cpu time

• Comparison with LR:
cpu time

• Comparison with
DSDP: accuracy

• Some considerations

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

20 / 36

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
SpeeDP
EXPA
SDPLR−MC
SB
DSDP

Figure 1: Comparison between NLP based methods, SB and DSDP on the problems up to
10000 variables

Comparison with LR: cpu time

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

• Implementation

• Problems and
softwares

• Test Problems
• Performance
profile[DolanMorè02]

• Comparison with
other codes: cpu time

• Comparison with LR:
cpu time

• Comparison with
DSDP: accuracy

• Some considerations

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

21 / 36

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SpeeDP
EXPA
SDPLR−MC
SB

Figure 2: Comparison among the NLP based methods, and SB

Comparison with DSDP: accuracy

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

• Implementation

• Problems and
softwares

• Test Problems
• Performance
profile[DolanMorè02]

• Comparison with
other codes: cpu time

• Comparison with LR:
cpu time

• Comparison with
DSDP: accuracy

• Some considerations

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

22 / 36

⋄ SpeeDP finds perfect dual feasibility on 20 problems on a total of 38
problems

Comparison with DSDP: accuracy

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

• Implementation

• Problems and
softwares

• Test Problems
• Performance
profile[DolanMorè02]

• Comparison with
other codes: cpu time

• Comparison with LR:
cpu time

• Comparison with
DSDP: accuracy

• Some considerations

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

22 / 36

⋄ SpeeDP finds perfect dual feasibility on 20 problems on a total of 38
problems

⋄ On the remaining, SpeeDP is more accurate than DSDP on 8 problems
(comparing the dual objective function)

Comparison with DSDP: accuracy

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

• Implementation

• Problems and
softwares

• Test Problems
• Performance
profile[DolanMorè02]

• Comparison with
other codes: cpu time

• Comparison with LR:
cpu time

• Comparison with
DSDP: accuracy

• Some considerations

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

22 / 36

⋄ SpeeDP finds perfect dual feasibility on 20 problems on a total of 38
problems

⋄ On the remaining, SpeeDP is more accurate than DSDP on 8 problems
(comparing the dual objective function)

⋄ On the 10 problems where SpeeDP is less accurate the difference is less
than 10−4

Some considerations

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

• Implementation

• Problems and
softwares

• Test Problems
• Performance
profile[DolanMorè02]

• Comparison with
other codes: cpu time

• Comparison with LR:
cpu time

• Comparison with
DSDP: accuracy

• Some considerations

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

23 / 36

⋄ SpeeDP is very efficient: it is much faster than interior point methods,
without losing in accuracy

Some considerations

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

• Implementation

• Problems and
softwares

• Test Problems
• Performance
profile[DolanMorè02]

• Comparison with
other codes: cpu time

• Comparison with LR:
cpu time

• Comparison with
DSDP: accuracy

• Some considerations

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

23 / 36

⋄ SpeeDP is very efficient: it is much faster than interior point methods,
without losing in accuracy

⋄ SpeeDP exploit sparsity of the original problem, we never need the
complete matrix Q

Some considerations

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

• Implementation

• Problems and
softwares

• Test Problems
• Performance
profile[DolanMorè02]

• Comparison with
other codes: cpu time

• Comparison with LR:
cpu time

• Comparison with
DSDP: accuracy

• Some considerations

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

23 / 36

⋄ SpeeDP is very efficient: it is much faster than interior point methods,
without losing in accuracy

⋄ SpeeDP exploit sparsity of the original problem, we never need the
complete matrix Q

⋄ In output of SpeeDP we have:

Some considerations

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

• Implementation

• Problems and
softwares

• Test Problems
• Performance
profile[DolanMorè02]

• Comparison with
other codes: cpu time

• Comparison with LR:
cpu time

• Comparison with
DSDP: accuracy

• Some considerations

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

23 / 36

⋄ SpeeDP is very efficient: it is much faster than interior point methods,
without losing in accuracy

⋄ SpeeDP exploit sparsity of the original problem, we never need the
complete matrix Q

⋄ In output of SpeeDP we have:

1. The vector v containing already the factorization X = V V T (for
free)

Some considerations

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

• Implementation

• Problems and
softwares

• Test Problems
• Performance
profile[DolanMorè02]

• Comparison with
other codes: cpu time

• Comparison with LR:
cpu time

• Comparison with
DSDP: accuracy

• Some considerations

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

23 / 36

⋄ SpeeDP is very efficient: it is much faster than interior point methods,
without losing in accuracy

⋄ SpeeDP exploit sparsity of the original problem, we never need the
complete matrix Q

⋄ In output of SpeeDP we have:

1. The vector v containing already the factorization X = V V T (for
free)

2. The multiplier λ associated to the vector v

3. Perfect primal feasibility, since the output of the method are vi/‖vi‖

Some considerations

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

• Implementation

• Problems and
softwares

• Test Problems
• Performance
profile[DolanMorè02]

• Comparison with
other codes: cpu time

• Comparison with LR:
cpu time

• Comparison with
DSDP: accuracy

• Some considerations

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

23 / 36

⋄ SpeeDP is very efficient: it is much faster than interior point methods,
without losing in accuracy

⋄ SpeeDP exploit sparsity of the original problem, we never need the
complete matrix Q

⋄ In output of SpeeDP we have:

1. The vector v containing already the factorization X = V V T (for
free)

2. The multiplier λ associated to the vector v

3. Perfect primal feasibility, since the output of the method are vi/‖vi‖

4. The quantity eT λ + nλmin(Q + Λ) (and we have computed
λmin(Q + Λ) to check the optimality condition) is a valid bound for
the original SDP relaxation

GW algorithm

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

• GW algorithm

• A fast heuristic for
large graphs I

• A fast heuristic for
large graphs II

• A fast heuristic for
large graphs III

• SpeeDP-MC

• Some considerations

Numerical Results for
SpeeDP-MC

Conclusions and future
work

24 / 36

⋄ The basic SDP relaxation of Max Cut is at the basis of the randomized
algorithm proposed by Goemans and Williamson [Goemans and
Williamson, 95] .

⋄ Given the solution of

min
n∑

i=1

n∑

j=1

qijv
T
i vj

‖vi‖
2 = 1, i = 1, . . . , n

vi ∈ ℜn

and given a random vector h uniformly distributed on the unit sphere, set
S = {i : vT

i h ≥ 0}

GW algorithm

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

• GW algorithm

• A fast heuristic for
large graphs I

• A fast heuristic for
large graphs II

• A fast heuristic for
large graphs III

• SpeeDP-MC

• Some considerations

Numerical Results for
SpeeDP-MC

Conclusions and future
work

24 / 36

⋄ The basic SDP relaxation of Max Cut is at the basis of the randomized
algorithm proposed by Goemans and Williamson [Goemans and
Williamson, 95] .

⋄ Given the solution of

min
n∑

i=1

n∑

j=1

qijv
T
i vj

‖vi‖
2 = 1, i = 1, . . . , n

vi ∈ ℜn

and given a random vector h uniformly distributed on the unit sphere, set
S = {i : vT

i h ≥ 0}

⋄ If all the weights of the graph are nonnegative, the expected value of the
produced cut is guaranteed to be greater than 0.87856 times the optimal
value of max cut

GW algorithm

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

• GW algorithm

• A fast heuristic for
large graphs I

• A fast heuristic for
large graphs II

• A fast heuristic for
large graphs III

• SpeeDP-MC

• Some considerations

Numerical Results for
SpeeDP-MC

Conclusions and future
work

24 / 36

⋄ The basic SDP relaxation of Max Cut is at the basis of the randomized
algorithm proposed by Goemans and Williamson [Goemans and
Williamson, 95] .

⋄ Given the solution of

min
n∑

i=1

n∑

j=1

qijv
T
i vj

‖vi‖
2 = 1, i = 1, . . . , n

vi ∈ ℜn

and given a random vector h uniformly distributed on the unit sphere, set
S = {i : vT

i h ≥ 0}

⋄ If all the weights of the graph are nonnegative, the expected value of the
produced cut is guaranteed to be greater than 0.87856 times the optimal
value of max cut

⋄ This heuristic is very used in practice, also as starting point for other
heuristics (for example as in BiqMac).

A fast heuristic for large graphs I

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

• GW algorithm

• A fast heuristic for
large graphs I

• A fast heuristic for
large graphs II

• A fast heuristic for
large graphs III

• SpeeDP-MC

• Some considerations

Numerical Results for
SpeeDP-MC

Conclusions and future
work

25 / 36

A fast heuristic for large graphs I

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

• GW algorithm

• A fast heuristic for
large graphs I

• A fast heuristic for
large graphs II

• A fast heuristic for
large graphs III

• SpeeDP-MC

• Some considerations

Numerical Results for
SpeeDP-MC

Conclusions and future
work

25 / 36

⋄ However, this approach is not practical when the graph gets too large since
the SDP relaxation is too expansive to solve with interior point methods

A fast heuristic for large graphs I

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

• GW algorithm

• A fast heuristic for
large graphs I

• A fast heuristic for
large graphs II

• A fast heuristic for
large graphs III

• SpeeDP-MC

• Some considerations

Numerical Results for
SpeeDP-MC

Conclusions and future
work

25 / 36

⋄ However, this approach is not practical when the graph gets too large since
the SDP relaxation is too expansive to solve with interior point methods

⋄ SpeeDP is able to solve in a short amount of time the basic SDP relaxation
for larger graphs (impossible with IP methods for graphs larger than some
thousand of nodes)

A fast heuristic for large graphs I

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

• GW algorithm

• A fast heuristic for
large graphs I

• A fast heuristic for
large graphs II

• A fast heuristic for
large graphs III

• SpeeDP-MC

• Some considerations

Numerical Results for
SpeeDP-MC

Conclusions and future
work

25 / 36

⋄ However, this approach is not practical when the graph gets too large since
the SDP relaxation is too expansive to solve with interior point methods

⋄ SpeeDP is able to solve in a short amount of time the basic SDP relaxation
for larger graphs (impossible with IP methods for graphs larger than some
thousand of nodes)

⋄ It gets for free the vectors vi needed by the GW algorithm

A fast heuristic for large graphs I

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

• GW algorithm

• A fast heuristic for
large graphs I

• A fast heuristic for
large graphs II

• A fast heuristic for
large graphs III

• SpeeDP-MC

• Some considerations

Numerical Results for
SpeeDP-MC

Conclusions and future
work

25 / 36

⋄ However, this approach is not practical when the graph gets too large since
the SDP relaxation is too expansive to solve with interior point methods

⋄ SpeeDP is able to solve in a short amount of time the basic SDP relaxation
for larger graphs (impossible with IP methods for graphs larger than some
thousand of nodes)

⋄ It gets for free the vectors vi needed by the GW algorithm

⋄ The time can be even reduced by tuning the accuracy: we can solve the
problem (NLPr) for a small r and then get the bound eT λ + λmin(Q + Λ)
(that again we have for free)

A fast heuristic for large graphs II

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

• GW algorithm

• A fast heuristic for
large graphs I

• A fast heuristic for
large graphs II

• A fast heuristic for
large graphs III

• SpeeDP-MC

• Some considerations

Numerical Results for
SpeeDP-MC

Conclusions and future
work

26 / 36

Consider again problem

min 〈Q, X〉
diag(X) = e
X � 0, X ∈ Sn

(SDPMC)

A fast heuristic for large graphs II

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

• GW algorithm

• A fast heuristic for
large graphs I

• A fast heuristic for
large graphs II

• A fast heuristic for
large graphs III

• SpeeDP-MC

• Some considerations

Numerical Results for
SpeeDP-MC

Conclusions and future
work

26 / 36

Consider again problem

min 〈Q, X〉
diag(X) = e
X � 0, X ∈ Sn

(SDPMC)

We solve the problem by SpeeDP, and apply the GW algorithm.

A fast heuristic for large graphs II

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

• GW algorithm

• A fast heuristic for
large graphs I

• A fast heuristic for
large graphs II

• A fast heuristic for
large graphs III

• SpeeDP-MC

• Some considerations

Numerical Results for
SpeeDP-MC

Conclusions and future
work

26 / 36

Consider again problem

min 〈Q, X〉
diag(X) = e
X � 0, X ∈ Sn

(SDPMC)

We solve the problem by SpeeDP, and apply the GW algorithm.

Then, a 1-opt heuristic is applied to improve the cut.

A fast heuristic for large graphs II

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

• GW algorithm

• A fast heuristic for
large graphs I

• A fast heuristic for
large graphs II

• A fast heuristic for
large graphs III

• SpeeDP-MC

• Some considerations

Numerical Results for
SpeeDP-MC

Conclusions and future
work

26 / 36

Consider again problem

min 〈Q, X〉
diag(X) = e
X � 0, X ∈ Sn

(SDPMC)

We solve the problem by SpeeDP, and apply the GW algorithm.

Then, a 1-opt heuristic is applied to improve the cut.

In [FischerGruberRebndlSotirov06] the GW+improvement is repeated for different
X ′ = αX + (1 − α)x̂x̂T , 0 < α < 1, where x̂ is the representative vector of
the current best cut

A fast heuristic for large graphs II

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

• GW algorithm

• A fast heuristic for
large graphs I

• A fast heuristic for
large graphs II

• A fast heuristic for
large graphs III

• SpeeDP-MC

• Some considerations

Numerical Results for
SpeeDP-MC

Conclusions and future
work

26 / 36

Consider again problem

min 〈Q, X〉
diag(X) = e
X � 0, X ∈ Sn

(SDPMC)

We solve the problem by SpeeDP, and apply the GW algorithm.

Then, a 1-opt heuristic is applied to improve the cut.

In [FischerGruberRebndlSotirov06] the GW+improvement is repeated for different
X ′ = αX + (1 − α)x̂x̂T , 0 < α < 1, where x̂ is the representative vector of
the current best cut

Idea: to bias the GW rounding with the current best cut.

A fast heuristic for large graphs II

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

• GW algorithm

• A fast heuristic for
large graphs I

• A fast heuristic for
large graphs II

• A fast heuristic for
large graphs III

• SpeeDP-MC

• Some considerations

Numerical Results for
SpeeDP-MC

Conclusions and future
work

26 / 36

Consider again problem

min 〈Q, X〉
diag(X) = e
X � 0, X ∈ Sn

(SDPMC)

We solve the problem by SpeeDP, and apply the GW algorithm.

Then, a 1-opt heuristic is applied to improve the cut.

In [FischerGruberRebndlSotirov06] the GW+improvement is repeated for different
X ′ = αX + (1 − α)x̂x̂T , 0 < α < 1, where x̂ is the representative vector of
the current best cut

Idea: to bias the GW rounding with the current best cut.

However, a factorization of X ′ is needed ⇒ impractical for large graphs

A fast heuristic for large graphs III

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

• GW algorithm

• A fast heuristic for
large graphs I

• A fast heuristic for
large graphs II

• A fast heuristic for
large graphs III

• SpeeDP-MC

• Some considerations

Numerical Results for
SpeeDP-MC

Conclusions and future
work

27 / 36

Our idea: perturb the objective function of the original problem, and resolve it.

A fast heuristic for large graphs III

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

• GW algorithm

• A fast heuristic for
large graphs I

• A fast heuristic for
large graphs II

• A fast heuristic for
large graphs III

• SpeeDP-MC

• Some considerations

Numerical Results for
SpeeDP-MC

Conclusions and future
work

27 / 36

Our idea: perturb the objective function of the original problem, and resolve it.

Q is replaced by Q′ = Q + βx̂x̂T with β > 0. Such a perturbation has again
the effect of moving the solution of problem (SDPMC) and hence of the
Goemans-Williamson rounding, towards a neighborhood of the current best
integral solution.

A fast heuristic for large graphs III

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

• GW algorithm

• A fast heuristic for
large graphs I

• A fast heuristic for
large graphs II

• A fast heuristic for
large graphs III

• SpeeDP-MC

• Some considerations

Numerical Results for
SpeeDP-MC

Conclusions and future
work

27 / 36

Our idea: perturb the objective function of the original problem, and resolve it.

Q is replaced by Q′ = Q + βx̂x̂T with β > 0. Such a perturbation has again
the effect of moving the solution of problem (SDPMC) and hence of the
Goemans-Williamson rounding, towards a neighborhood of the current best
integral solution.

The new problem is solved again by SpeeDP starting by the previous solution
(warm start)

A fast heuristic for large graphs III

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

• GW algorithm

• A fast heuristic for
large graphs I

• A fast heuristic for
large graphs II

• A fast heuristic for
large graphs III

• SpeeDP-MC

• Some considerations

Numerical Results for
SpeeDP-MC

Conclusions and future
work

27 / 36

Our idea: perturb the objective function of the original problem, and resolve it.

Q is replaced by Q′ = Q + βx̂x̂T with β > 0. Such a perturbation has again
the effect of moving the solution of problem (SDPMC) and hence of the
Goemans-Williamson rounding, towards a neighborhood of the current best
integral solution.

The new problem is solved again by SpeeDP starting by the previous solution
(warm start)

Then the GW rounding and the 1-opt improvement are repeated as well. The
whole procedure is repeated a few times with different values of β.

SpeeDP-MC

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

• GW algorithm

• A fast heuristic for
large graphs I

• A fast heuristic for
large graphs II

• A fast heuristic for
large graphs III

• SpeeDP-MC

• Some considerations

Numerical Results for
SpeeDP-MC

Conclusions and future
work

28 / 36

ALGORITHM SpeeDP-MC

Data: Q, x̂ = e, α > 0, kmax, Q =
∑

i,j |Qij |/|E|.

For k = kmax, . . . , 0 do :

S.0 Set β = kαQ and Q′ = Q + β(x̂x̂T)

S.1 Apply SpeeDP to problem (SDPMC) with Q = Q′ and let vi,
i = 1, . . . , n be the returned solution and the valid bound φ on the
max cut problem with objective function corresponding to Q′.

S.2 Apply the Goemans-Williamson hyperplane rounding technique to
the vectors vi, i = 1, . . . , n. This gives a bipartition representative
vector x̄.

S.3 Apply the 1-opt improvement to x̄. This gives a new bipartition
representative vector x̃. If 〈Q, x̃x̃T 〉 < 〈Q, x̂x̂T 〉, set x̂ = x̃.

Return Best cut x̂, lower bound 〈−Q, x̂x̂T 〉, upper bound φ.

Some considerations

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

• GW algorithm

• A fast heuristic for
large graphs I

• A fast heuristic for
large graphs II

• A fast heuristic for
large graphs III

• SpeeDP-MC

• Some considerations

Numerical Results for
SpeeDP-MC

Conclusions and future
work

29 / 36

⋄ The amount of perturbation decreases when the iteration counter
increases

Some considerations

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

• GW algorithm

• A fast heuristic for
large graphs I

• A fast heuristic for
large graphs II

• A fast heuristic for
large graphs III

• SpeeDP-MC

• Some considerations

Numerical Results for
SpeeDP-MC

Conclusions and future
work

29 / 36

⋄ The amount of perturbation decreases when the iteration counter
increases

⋄ The minimization step is not expensive, thanks to the warm start technique

Some considerations

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

• GW algorithm

• A fast heuristic for
large graphs I

• A fast heuristic for
large graphs II

• A fast heuristic for
large graphs III

• SpeeDP-MC

• Some considerations

Numerical Results for
SpeeDP-MC

Conclusions and future
work

29 / 36

⋄ The amount of perturbation decreases when the iteration counter
increases

⋄ The minimization step is not expensive, thanks to the warm start technique

⋄ The algorithm provides both a lower and upper bound, giving a
performance guarantee

Numerical results

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

• Numerical results

• Some numbers

• A picture

• Some huge graphs

• Some huge graphs

Conclusions and future
work

30 / 36

We used the graph generator rudy to define instances with growing dimension
and density and different weights.

Numerical results

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

• Numerical results

• Some numbers

• A picture

• Some huge graphs

• Some huge graphs

Conclusions and future
work

30 / 36

We used the graph generator rudy to define instances with growing dimension
and density and different weights.

We first considered graphs with number of nodes n equal to 500 + i · 250, for
i = 0, . . . , 8 and with edge density equal to 10% + i · 10% for i = 0, . . . , 9.
For each pair (n, density) we generated three different graphs with positive
weights ranging between 1 and 100.

Some numbers

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

• Numerical results

• Some numbers

• A picture

• Some huge graphs

• Some huge graphs

Conclusions and future
work

31 / 36

cut time gap % 0.87856*ub

n=500

388004.6667 6.216666667 4.595666667 356550.8369

730297.3333 8.366666667 3.421133333 663560.8102

1063049 13.4 2.761066667 959739.3467

1391196.333 18.62666667 2.394766667 1251519.1163

1714089 19.37666633 1.992666667 1535937.3951

2032992.333 36.21333233 1.752933333 1817416.2683

2347809 27.92000033 1.5559 2094784.6522

2661106 30.53333433 1.295366667 2368226.2755

2971604.333 44.373333 1.0805 2638941.8736

3279198.333 47.47666667 0.880966667 2906354.3058

n=1500

3220711 60.03666533 3.394633333 2925643.823

6195972 203.75 2.443333333 5576536.602

9128485.333 305.3333283 1.932633333 8174914.701

12020693.33 267.9600067 1.6445 10734573.2

14899393 338.5299987 1.354266667 13267285.67

17760397.33 272.16333 2.6834 16022282.32

20603549.33 347.5099997 2.344366667 18525817.52

23430844.67 384.0266673 2.016433333 21000489.11

26236188 341.8233337 1.707533333 23443644.4

29026448 521.1066593 1.414566667 25862214.06

n=2500

8707864.333 326.813334 2.866133333 7869652.293

16883800 512.99999 2.059233333 15138884.38

24971508.67 834.2133483 2.199433333 22421516.56

32984345.33 1475.053324 1.823933333 29507260.52

40946184 1444.76001 2.447766667 36854243.7

48873544 1019.210001 1.725333333 43679150.81

56771676 2992.886719 1.486266667 50618557.71

64627920 1933.013305 1.558366667 57664353.54

72453770.67 2257.273397 1.352333333 64515830.64

80230896 2650.269979 0.905633333 71126099.68

A picture

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

• Numerical results

• Some numbers

• A picture

• Some huge graphs

• Some huge graphs

Conclusions and future
work

32 / 36

Figure 3: Average CPU time of the heuristic on the random graphs

A picture

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

• Numerical results

• Some numbers

• A picture

• Some huge graphs

• Some huge graphs

Conclusions and future
work

32 / 36

Figure 3: Average CPU time of the heuristic on the random graphs

The heuristic is able to produce a good cut in a small amount of time, and as
expected the performance of the heuristic is better on sparse graphs in term of
time, but the gap decreases when the density of the graph increases.

Some huge graphs

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

• Numerical results

• Some numbers

• A picture

• Some huge graphs

• Some huge graphs

Conclusions and future
work

33 / 36

We generate three random graphs with 100 001 nodes, 7 050 827 edges and
different weights. The results are in Table 1 where we report the ranges of the
weights, the total time, the value of the bound, the best cut obtained and the %
gap.

Weights Total Upper Best gap%
CPU time Bound Cut

1 15 043.98 4 113 227.8 3 959 852 3.87
[1, 100] 15 142.22 212 076 831.2 203 236 495 4.35

[−1000, 1000] 15 919.40 21 006 071 437.9 20 129 935 523 4.35

Table 1: Random sparse graphs with 100 001 nodes and 7 050 827 edges

Some huge graphs

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

• Numerical results

• Some numbers

• A picture

• Some huge graphs

• Some huge graphs

Conclusions and future
work

34 / 36

We also generated 6-regular graphs (3D toroidal grid graphs) with 1 030 301
nodes and 3 090 903 edges and different weights. The results are reported in
Table 5. To the best of our knowledge, no other methods can achieve this
accuracy for graphs of this size.

Weights Total Upper Best gap%
CPU time Bound Cut

1 4 723 3 090 133 3 060 300 0.97
[1, 10] 22 042 15 454 739 15 338 007 0.76

[1, 1000] 29 072 1 545 550 679 1 534 441 294 0.72
[−100, 100] 47 491 57 288 795 49 111 079 14.27

Table 2: 6-regular graphs with 1 030 301 nodes and 3 090 903 edges

Conclusions

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

• Conclusions

• Future work

35 / 36

⋄ SpeeDP is a very fast and accurate method for solving the SDP relaxation of
Max Cut

Conclusions

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

• Conclusions

• Future work

35 / 36

⋄ SpeeDP is a very fast and accurate method for solving the SDP relaxation of
Max Cut

⋄ SpeeDP may be useful in order to increase the dimension of the problems
solved with an exact algorithm

Conclusions

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

• Conclusions

• Future work

35 / 36

⋄ SpeeDP is a very fast and accurate method for solving the SDP relaxation of
Max Cut

⋄ SpeeDP may be useful in order to increase the dimension of the problems
solved with an exact algorithm

⋄ SpeeDP allows to define efficient heuristics that produce feasible cuts with a
certified upper limit on the distance from optimality

Conclusions

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

• Conclusions

• Future work

35 / 36

⋄ SpeeDP is a very fast and accurate method for solving the SDP relaxation of
Max Cut

⋄ SpeeDP may be useful in order to increase the dimension of the problems
solved with an exact algorithm

⋄ SpeeDP allows to define efficient heuristics that produce feasible cuts with a
certified upper limit on the distance from optimality

⋄ SpeeDP-MC allows to find very good cuts for graphs with million of edges

Future work

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

• Conclusions

• Future work

36 / 36

⋄ Extend SpeeDP to the bisection problem

Future work

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

• Conclusions

• Future work

36 / 36

⋄ Extend SpeeDP to the bisection problem

Future work

Introduction

Optimality conditions

A general algorithm

SpeeDP

Computational Results

A heuristic algorithm for
Max Cut

Numerical Results for
SpeeDP-MC

Conclusions and future
work

• Conclusions

• Future work

36 / 36

⋄ Extend SpeeDP to the bisection problem

⋄ Define a parallel version of the code. The main burden in computing the
function

fǫ(v) :=
∑

i, j

qij

vT
i vj

‖vi‖‖vj‖
+

1

ǫ

n∑

i=1

(‖vi‖
2 − 1)2

d(vi)
,

and its gradient is the vector with the i-th component equal to
∑

j qij
vj

‖vj‖ ,
but this can be parallelized, getting a code that is faster and able to tackle
even larger graphs.

	Introduction
	LRSDP relaxation
	Relaxations

	Optimality conditions
	A NS G.O. condition

	A general algorithm
	A general algorithmic approach
	Unconstrained formulations for (NLPr)
	Quotient function
	Quotient function II

	SpeeDP
	A new unconstrained formulation of problem (NLPr)
	Properties of problem (RQr)
	A specific algorithm for problem (RQr) I
	A specific algorithm for problem (RQr) II
	Convergence result
	SpeeDP
	Some Remarks

	Computational Results
	Implementation
	Problems and softwares
	Test Problems
	Performance profile[DolanMorè02]
	Comparison with other codes: cpu time
	Comparison with LR: cpu time
	Comparison with DSDP: accuracy
	Some considerations

	A heuristic algorithm for Max Cut
	GW algorithm
	A fast heuristic for large graphs I
	A fast heuristic for large graphs II
	A fast heuristic for large graphs III
	SpeeDP-MC
	Some considerations

	Numerical Results for SpeeDP-MC
	Numerical results
	Some numbers
	A picture
	Some huge graphs
	Some huge graphs

	Conclusions and future work
	Conclusions
	Future work

