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Introduction

Standard form SDP

Primal problem

min
X�0

trace(A0X ) subject to trace (AkX ) = bk (k = 1, . . . ,m),

where the data matrices Ai ∈ Sn×n (i = 0, . . . ,m) are linearly independent.

Sn×n: symmetric n× n matrices;

X � 0: X symmetric positive semi-definite.

Sometimes we will add the additional constraint X ≥ 0 (componentwise
nonnegative).
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SDP and matrix algebras

Matrix algebras

Definition

A set A ⊆ Cn×n (resp. Rn×n) is called a matrix *-algebra over C (resp. R) if, for
all X ,Y ∈ A:

αX + βY ∈ A ∀α, β ∈ C (resp. R);

X ∗ ∈ A;

XY ∈ A.

Assumption

There is a ‘low dimensional’ matrix *-algebra ASDP ⊇ {A0, . . . ,Am}.
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SDP and matrix algebras

Example

The circulant matrices form a commutative matrix *-algebra.

Form of a circulant matrix C

C =





















c0 c1 c2 · · · cn−1

cn−1 c0 c1 · · ·
cn−2 cn−1 c0 c1

. . .
...

...
. . .

. . .
. . .

. . .

c1
c1 · · · cn−1 c0





















.

Each row is a cyclic shift of the row above it, i.e: Cij = c
i−j mod n

(i , j = 0, . . . , n− 1).

Further reading:

R.M. Gray. Toeplitz and Circulant Matrices: A review. Foundations and Trends in

Communications and Information Theory, 2(3):155–239, 2006. Available online.
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SDP and matrix algebras

Link with SDP

Recall the dual SDP problem:

Dual problem

max
y∈Rm, S�0

bTy subject to

m
∑

i=1

yiAi + S = A0.

Clearly S ∈ ASDP .

What about the primal problem:

min
X�0

trace(A0X ) subject to trace (AkX ) = bk (k = 1, . . . ,m)?

We can show (next slides) that there exists an optimal X ∈ ASDP if the SDP
problem and its dual meet the Slater condition.
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SDP and matrix algebras

The central path

Central path

For any µ > 0, the following system has a unique solution:

trace (AkX ) = bk (k = 1, . . . ,m)
m
∑

i=1

yiAi + S = A0

XS = µI .

The solution, denoted by (X (µ), y(µ), S(µ)), defines an analytic curve
parameterized by µ.

This curve is called the (primal-dual) central path.

Setting µ = 0 gives the optimality conditions.

IPM’s ‘follow’ the central path approximately.

Etienne de Klerk (Tilburg University) Symmetry in SDP: theory and applications ESI 2010 6 / 59



SDP and matrix algebras

The central path (ctd.)

Lemma

If A ∈ ASDP and det(A) 6= 0, then A−1 ∈ ASDP .

One has X (µ) = µS(µ)−1 ∈ ASDP , since S(µ) ∈ ASDP

The limit X ∗ = limµ↓0 X (µ) exists and gives a minimizer. Thus X ∗ ∈ ASDP .

cf.

Y. Kanno, M. Ohsaki, K. Murota and N. Katoh, Group symmetry in interior-point methods for
semidefinite programming, Optimization and Engineering, 2(3): 293–320, 2001.

Consequence

We may restrict the primal problem to:

min
X�0

{trace(A0X ) : trace(AkX ) = bk (k = 1, . . . ,m), X ∈ ASDP} .
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Decomposition of matrix *-algebras

Canonical decomposition of a matrix *-algebra A

Theorem (Wedderburn (1907))

Assume A is a matrix *-algebra over C that contains I . Then there is a unitary Q
(Q∗Q = I ) and some integer s such that

Q∗AQ =













A1 0 · · · 0

0 A2

...
...

. . . 0
0 · · · 0 As













,

where each Ai ∼ Cni×ni for some integers ni , and takes the form

Ai =



































A 0 · · · 0

0 A
...

...
. . . 0

0 · · · 0 A













∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

A ∈ C
ni×ni























(i = 1, . . . , s).
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Decomposition of matrix *-algebras

Joseph Wedderburn (1882 – 1942)

”He was apparently a very shy man and much preferred looking at the
blackboard to looking at the students. He had the galley proofs from his
book ’Lectures on Matrices’ pasted to cardboard for durability, and his
‘lecturing’ consisted of reading this out loud while simultaneously
copying it onto the blackboard.”
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Decomposition of matrix *-algebras

Example

The circulant matrices:





















c0 c1 c2 · · · cn−1

cn−1 c0 c1 · · ·
cn−1 c0 c1

. . .
...

...
. . .

. . .
. . .

. . .

c1
c1 · · · cn−1 c0





















are diagonalized by the unitary (discrete Fourier transform) matrix:

Qij :=
1√
n
e−2π

√
−1ij/n (i , j = 0, . . . , n − 1).
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SDP reformulation

SDP reformulation

Assume we have a basis B1, . . . ,Bd of ASDP . Set X =
∑d

i=1 xiBi to get

min
X�0

{trace(A0X ) : trace(AkX ) = bk (k = 1, . . . ,m),X ∈ ASDP}

= min
x∈Rd

{

d
∑

i=1

xi trace(A0Bi ) :

d
∑

i=1

xi trace(AkBi ) = bk ,

(k = 1, . . . ,m),

d
∑

i=1

xiBi � 0

}

.

Replace the LMI by
∑d

i=1 xiQ
∗BiQ � 0 to get block-diagonal structure.

Delete any identical copies of blocks in the block structure.
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Wedderburn theorem: proof sketch

Proof sketch of Wedderburn’s theorem

Let A be a matrix *-algebra over C.

Definition

The commutant of A is defined as

A′ :=
{

X ∈ C
n×n : XA = AX ∀ A ∈ A

}

.

The commutant is a matrix *-algebra over C.

Definition

The center of A is the commutative matrix *-algebra A∩A′.
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Wedderburn theorem: proof sketch

Proof sketch of Wedderburn’s theorem (ctd.)

Lemma

A commutative matrix *-algebra over C of dimension s containing I has a basis
E1, . . . ,Es such that:

E ∗
i = Ei and E 2

i = Ei (idempotent);

Ei is not a sum of other idempotents in the algebra (minimality);
∑s

i=1 Ei = I .

Lemma

Let A a matrix ∗-algebra over C containing I , and let E1, . . . ,Es be the above
basis of A∩A′ (the center of A). Then

A =

s
⊕

i=1

AEi .
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Wedderburn theorem: proof sketch

Proof sketch of Wedderburn’s theorem (ctd.)

The lemma may be used to block diagonalize A. Note

AEi = AE 2
i = EiAEi .

Since Ei = E ∗
i (Hermitian) there is a unitary Q (Q∗Q = I ) such that

Ei = QΛiQ
∗ (i = 1, . . . , s)

and Λi a diagonal 0− 1 matrix for each i and
∑

i Λi = I .

Thus

Q∗AQ =
s

⊕

i=1

Q∗EiAEiQ

=

s
⊕

i=1

Λi (Q
∗AQ) Λi .

Thus Q∗AQ is block diagonal. Denote block i by Ai .
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Wedderburn theorem: proof sketch

Proof sketch of Wedderburn’s theorem (ctd.)

We have

Q∗AQ =











A1 0 · · · 0

0 A2

...
...

. . . 0
0 · · · 0 As











and Ai ∩A
′
i = CItrace(Ei ) (i = 1, . . . , s).

Theorem

A matrix ∗-algebra B ⊂ Cn×n with center B ∩ B′ = CI takes the form

U∗BU =





























A 0 · · · 0

0 A

.

.

.

.

.

.
. . . 0

0 · · · 0 A











∣

∣

∣

∣

∣

∣

∣

∣

∣

A ∈ C
t×t



















for some unitary U and integer t. The number of blocks n/t equals the dimension
of a maximal commutative sub-algebra of B.
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Wedderburn theorem: proof sketch

Further reading

The proof sketch here is based on:

§2.2 in:

D. Gijswijt. Matrix Algebras and Semidefinite Programming Techniques for Codes. PhD thesis,
Univesity of Amsterdam, 2005. Available online.

Further reading:

Chapter X in:

J.H.M. Wedderburn. Lectures on Matrices. AMS publishers, 1934. Available online.

The proof is constructive; randomized algorithms that perform the canonical
decomposition using the same ideas:

W. Eberly and M. Giesbrecht, Efficient decomposition of separable algebras. Journal of Symbolic

Computation, 37(1): 35–81, 2004. Preprint available online.

K. Murota, Y. Kanno, M. Kojima and S. Kojima, A Numerical Algorithm for Block-Diagonal
Decomposition of Matrix *-Algebras, Preprint 2007 (available online).
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Coherent configurations

Coherent configurations

A basis B1, . . . ,Bd of a matrix *-algebra is called a coherent configuration if:

The Bi ’s are 0-1 matrices;

For each i , BT
i = Bi∗ for some i∗ ∈ {1, . . . , d};

∑d

i=1 Bi = J (the all-ones matrix).

If the Bi ’s also commute, and B1 = I , then we speak of an association scheme.

Consequence

If ASDP is spanned by a coherent configuration and X =
∑d

i=1 xiBi , then

X � 0 and X ≥ 0 ⇐⇒
d
∑

i=1

xiBi � 0 and x ≥ 0.
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Coherent configurations

Example

The circulant matrices have the basis





















1 0 0 · · · 0
0 1 0 · · ·
0 0 1 0

. . .
...

...
. . .

. . .
. . .

. . .

0 · · · 0 1





















,





















0 1 0 · · · 0
0 0 1 · · ·

0 0 1
. . .

...
...

. . .
. . .

. . .
. . .

1
1 · · · 0 0





















, . . .

and form an association scheme.
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Coherent configurations

SDP reformulation for nonnegative variables

Assume we have a coherent configuration B1, . . . ,Bd of ASDP . Then

min
X�0,X≥0

{trace(A0X ) : trace(AkX ) = bk (k = 1, . . . ,m),X ∈ ASDP}

= min
x≥0

{

d
∑

i=1

xi trace(A0Bi ) :

d
∑

i=1

xi trace(AkBi ) = bk ,

(k = 1, . . . ,m),

d
∑

i=1

xiBi � 0

}

.

We may again replace the LMI by
∑d

i=1 xiQ
∗BiQ � 0 to get block-diagonal

structure ...

... and delete any identical copies of blocks in the block structure.
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Lovász ϑ-function

Lovász ϑ-function

A graph G = (V ,E ) is given.

Lovász ϑ-function

ϑ(G) := max trace (JX )

subject to
Xij = 0, {i , j} ∈ E (i 6= j)

trace(X ) = 1
X � 0,

where e denotes the all-one vector.

Schrijver ϑ′-function

Add the additional constraint X ≥ 0 to the ϑ problem.
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Lovász ϑ-function

Stable sets in graphs

A stable set of G = (V ,E ) is a subset V ′ ⊂ V such that the induced subgraph on
V ′ has no edges.

The stability number α(G) is the cardinality of the largest co-clique of G .
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Lovász ϑ-function

Vertex colourings

A (proper) vertex colouring is an assignment of colours to the vertices V of G
such that endpoints of each edge are assigned different colours.

The smallest number of colours needed is called the chromatic number χ(G).
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Lovász ϑ-function

Lovász sandwich theorem

Theorem

α(G) ≤ ϑ′(G) ≤ ϑ(G) ≤ χ(Ḡ),

where Ḡ is the complementary graph of G.

One may approximate α(G) or χ(Ḡ) by ϑ(G) (or ϑ′(G)).

E.g. for the Pentagon graph (C5) one has

2 ≡ α(C5) ≤ ϑ′(C5) =
√
5 = ϑ(C5) ≤ χ(C̄5) ≡ 3.

We will do the symmetry reduction of the SDP to calculate ϑ′(C5) in detail.
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Example: ϑ′(C5)

Example: ϑ′-of the Pentagon

Equivalent formulation for ϑ′:

ϑ′(G) := max
X�0,X≥0

{trace(JX ) | trace(AX ) = 0, trace(X ) = 1},

where A is the adjacency matrix of the graph G .

The data matrices of this SDP are J, A, and I .

For G = C5 one has

A =













0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0













.

The data matrices are 5× 5 symmetric circulant matrices.
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Example: ϑ′(C5)

Example (ctd.)

A basis for the 5× 5 symmetric circulant matrices is

B1 =









1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1









, B2 =









0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0









, B3 =









0 0 1 1 0
0 0 0 1 1
1 0 0 0 1
1 1 0 0 0
0 1 1 0 0









Note that A = B2 where A the adjacency matrix of C5.
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Example: ϑ′(C5)

Example (ctd.)

For Q the discrete Fourier transform matrix we have (B1 = I ):

Q∗B2Q =













2 0 0 0 0

0 3−
√

5√
5−1

0 0 0

0 0 − 2√
5−1

0 0

0 0 0 − 2√
5−1

0

0 0 0 0 3−
√

5√
5−1













Q∗B3Q =













2 0 0 0 0

0 − 2√
5−1

0 0 0

0 0 3−
√

5√
5−1

0 0

0 0 0 3−
√

5√
5−1

0

0 0 0 0 − 2√
5−1













.

(Block-)diagonal form with repeated blocks.
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Example: ϑ′(C5)

Example (ctd.)

ϑ′(C5) := max
X�0,X≥0

{trace(JX ) | trace(AX ) = 0, trace(X ) = 1}.

Setting X =
∑3

i=1 xiBi with xi ≥ 0 (i = 1, 2, 3):

ϑ′(C5) := max
x≥0

3
∑

i=1

xi trace(JBi )

subject to:

3
∑

i=1

xi trace(ABi ) = 0,

3
∑

i=1

xi trace(Bi ) = 1,

3
∑

i=1

xiQ
∗BiQ � 0.

Note that A = B2 and trace(AX ) = 0 imply x2 = 0, and trace(X ) = 1 implies
x1 = 1/5. Thus

ϑ′(C5) := max
x3≥0

{1 + 10x3 | 1/5I + x3Q
∗B3Q � 0}.
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Example: ϑ′(C5)

Example (ctd.)

Deleting repeated blocks, we end with an LP in one variable:

ϑ′(C5) := max
x3≥0

1 + 10x3

subject to

1

5





1 0 0
0 1 0
0 0 1



+ x3







2 0 0
0 − 2√

5−1
0

0 0 3−
√
5√

5−1






� 0.

Optimal solution x3 =
√
5−1
10 , ϑ′(C5) =

√
5.
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The regular ∗-representation

Other symmetry reduction techniques

In general we do not know the unitary Q that gives the canonical
decomposition of ASDP , ...

... and the matrix size n may be too large to compute Q using linear algebra.

Idea: use other faithful representations of ASDP .

One such faithful representation is the regular ∗-representation of ASDP .
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The regular ∗-representation

Regular ∗-representation

Assume that B1, . . . ,Bd ∈ Rn×n is an orthogonal basis of ASDP , seen as a matrix
∗-algebra over R. Normalize the basis:

Di :=
1

√

trace(BT
i Bi )

Bi (i = 1, . . . , d).

Define multiplication parameters γk
i ,j via:

DiDj =
∑

k

γk
i ,jDk ,

and define the d × d matrices Lk (k = 1, . . . , d) via

(Lk )ij = γ i
k,j .
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The regular ∗-representation

Regular ∗-representation ctd.

The matrices Lk form a basis of a faithful representation of ASDP , say Areg
SDP , that

is also a C∗-algebra, called the regular ∗-representation of ASDP .

Theorem

The mapping Di 7→ Li (i = 1, . . . , d) defines a ∗-isomorphism from ASDP to Areg
SDP .

Corollary:
∑d

i=1 xiDi � 0 ⇐⇒ ∑d
i=1 xiLi � 0.

Consequence: We can work with d × d data matrices as opposed to n × n.
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The regular ∗-representation

SDP reformulation via regular ∗-representation

Setting X =
∑d

i=1 xiDi ,

min
X�0

{trace(A0X ) : trace(AkX ) = bk (k = 1, . . . ,m)}

becomes

min
x∈Rd

{

d
∑

i=1

xi trace(A0Di ) :

d
∑

i=1

xi trace(AkDi ) = bk (k = 1, . . . ,m),

d
∑

i=1

xiDi � 0

}

.

... and by the corollary we can replace Di by Li in the LMI.

See the proof of Theorem 1 in:

E. de Klerk, D.V. Pasechnik and A. Schrijver. Reduction of symmetric semidefinite programs
using the regular *-representation. Mathematical Programming B, 109(2-3):613-624, 2007.
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The regular ∗-representation

Nonnegative matrix variables

As before, if ASDP is spanned by a coherent configuration, then the additional
nonnegativity constraint X ≥ 0 becomes x ≥ 0. Thus

min
X�0,X≥0

{trace(A0X ) : trace(AkX ) = bk (k = 1, . . . ,m)}

reduces to

min
x≥0

{

d
∑

i=1

xi trace(A0Di) :

d
∑

i=1

xi trace(AkDi ) = bk (k = 1, . . . ,m),

d
∑

i=1

xiLi � 0

}

.
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ϑ
′(C5) example revisited

ϑ
′(C5) example revisited

Recall the reformulation to compute ϑ′(C5):

ϑ′(C5) := max
x3≥0

{1 + 10x3 | 1/5B1 + x3B3 � 0},

where

B1 =









1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1









, B2 =









0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0









, B3 =









0 0 1 1 0
0 0 0 1 1
1 0 0 0 1
1 1 0 0 0
0 1 1 0 0









was the basis for the 5× 5 symmetric circulant matrices.
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ϑ
′(C5) example revisited

ϑ
′(C5) example (ctd.)

Normalize the basis B1,B2,B3 to get

D1 =
1√
5
I , D2 =

1√
10









0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0









, D3 =
1√
10









0 0 1 1 0
0 0 0 1 1
1 0 0 0 1
1 1 0 0 0
0 1 1 0 0









Multiplication table:

D1 D2 D3

D1
1√
5
D1

1√
5
D2

1√
5
D3

D2
1√
5
D2

1√
5
D1 +

1√
10
D3

1√
10
(D2 + D3)

D3
1√
5
D3

1√
10
(D2 + D3)

1√
5
D1 +

1√
10
D2
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ϑ
′(C5) example revisited

ϑ
′(C5) example (ctd.)

Construct the matrices L1, L2, and L3 via:

DiDj =
∑

k

γk
i ,jDk ,

and
(Lk)ij = γ i

k,j (k = 1, . . . , 3).

For example:

L3 :=





γ1
3,1 γ1

3,2 γ1
3,3

γ2
3,1 γ2

3,2 γ2
3,3

γ3
3,1 γ3

3,2 γ3
3,3



 =







0 0 1√
5

0 1√
10

1√
10

1√
5

1√
10

0






.
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ϑ
′(C5) example revisited

ϑ
′(C5) example (ctd.)

We had

ϑ′(C5) := max
x3≥0

{1 + 10x3 | 1/5B1 + x3B3 � 0},

= max
x3≥0

{1 + 10x3 | 1/
√
5D1 +

√
10x3D3 � 0}.

Via the regular ∗-reduction we may replace the Di ’s by the Li ’s:

ϑ′(C5) = max
x3≥0

1 + 10x3

subject to

1

5
I +

√
10x3







0 0 1√
5

0 1√
10

1√
10

1√
5

1√
10

0






� 0.
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Matrix ∗-algebras from groups

Matrix ∗-algebras from groups

Symmetric group

Let Sn denote the symmetric group on n elements, i.e. the group of all
permutations of {1, . . . , n}.

We may represent any sub-group G ⊆ Sn as a multiplicative group of n × n
permutation matrices via

(Pπ)i ,j :=

{

1 if π(i) = j
0 else.

π ∈ G, i , j = 1, . . . , n.

Commutant (centralizer ring)

The commutant of the representation is

{A ∈ C
n×n : APπ = PπA ∀π ∈ G},

and forms a matrix ∗-algebra over C.
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Matrix ∗-algebras from groups

Matrix ∗-algebras from groups

Lemma

The commutant of the representation has a basis that is a coherent configuration.

One may construct this 0-1 basis of the commutant from the orbitals of G.

Definition

The two-orbit or orbital of an index pair (i , j) is defined as

{(π(i), π(j)) : π ∈ G} .

The orbitals partition {1, . . . , n} × {1, . . . , n} and this partition yields the 0− 1
matrices of the coherent configuration.
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Matrix ∗-algebras from groups

Matrix automorphism groups

Definition

We define the automorphism group aut(Z ) of a matrix Z ∈ Sn×n as all π ∈ Sn

such that
Zij = Zπ(i)π(j) ∀i , j = 1, . . . , n.

Thus
Z = PπZP

T
π ∀π ∈ aut(Z ).

Note that
ZPπ = PπZ ∀π ∈ aut(Z ),

i.e. Z belongs to the commutant of the permutation representation of aut(Z ).
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Matrix ∗-algebras from groups

SDP symmetry assumption

SDP symmetry assumption:

The multiplicative matrix group GSDP :=
⋂m

i=0 aut(Ai ) is non-trivial.

Thus we may take ASDP as the commutant of the permutation representation of
GSDP .

Then ASDP will have a 0-1 basis (coherent configuration) given by the orbitals of
GSDP .
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Matrix ∗-algebras from groups

ϑ
′ example once more

ϑ′(C5) := max
X�0,X≥0

{trace(JX ) | trace(AX ) = 0, trace(X ) = 1},

where

A =













0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0













.

The data matrices of this SDP are J, A, and I and GSDP = aut(A) = D5, where
D5 is the dihedral group on 5 elements.
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Matrix ∗-algebras from groups

ϑ
′(C5) example revisited

The orbitals of D5 correspond to the basis we had before:

B1 =









1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1









, B2 =









0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0









, B3 =









0 0 1 1 0
0 0 0 1 1
1 0 0 0 1
1 1 0 0 0
0 1 1 0 0









.

Thus ASDP is the set 5× 5 symmetric circulant matrices.
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Matrix ∗-algebras from groups

Appendix: Applications

Error correcting binary codes;

Crossing numbers of completely bipartite graphs;

Quadratic assignment problems;

Truss topology optimization.

Etienne de Klerk (Tilburg University) Symmetry in SDP: theory and applications ESI 2010 44 / 59



Binary codes

The Hamming graph and binary codes

The Hamming graph G(k , δ) has vertices indexed by {0, 1}k and vertices adjacent
if they are at Hamming distance less than δ.

Hamming graph with k = 3 and δ = 2.

Usual notation: α(G(k , δ)) =: A(k , δ). Thus A(3, 2) = 4 (see picture).

A(k , δ) is the maximum size of a binary code on k letters such that any two words
are at a Hamming distance of at least δ.
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Binary codes

ϑ
′-of the Hamming graph

Equivalent formulation for ϑ′:

ϑ′(G) := max
X�0,X≥0

{trace(JX ) | trace(A+ I )X = 1},

where A is the adjacency matrix of the graph G . Thus GSDP = aut(A).

For the Hamming graph |aut(A)| = 2kk!, and ....

... the commutant of aut(A) is the commutative Bose-Mesner algebra of the
Hamming scheme ...

... that has dimension k + 1.

Thus the SDP matrices may be reduced from the original size n = 2k to
diagonal matrices of size k + 1.

The resulting LP coincides with the LP bound of Delsarte.

A. Schrijver. A comparison of the Delsarte and Lovász bounds. IEEE Trans. Inform. Theory,

25:425–429, 1979.
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Binary codes

Improvements

A. Schrijver. New code upper bounds from the Terwilliger algebra. IEEE Transactions on

Information Theory, 51:2859–2866, 2005,

In this paper, a stronger SDP bound for A(k , δ) is obtained as follows:

a stronger SDP relaxation is constructed via ‘lift-and-project’ ...

... such that some symmetry is retained in the resulting SDP.

ASDP becomes the Terwilliger algebra of the Hamming scheme, a
non-commutative algebra that contains the Bose-Mesner algebra of the
Hamming scheme.

The Terwilliger algebra has dimension
(

k+3
3

)

and its canonical
block-diagonalization is known.

Thus, improved upper bounds were computed for A(19, 6), A(23, 6), A(25, 6), ...
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Binary codes

Further improvements

Using other lift-and-project schemes, slightly better SDP bounds may be obtained.

M. Laurent. Strengthened semidefinite bounds for codes. Mathematical Programming,

109(2-3):239–261, 2007,

... and the approach may be extended to non-binary codes:

D. Gijswijt, A. Schrijver, H. Tanaka, New upper bounds for nonbinary codes based on the

Terwilliger algebra and semidefinite programming, Journal of Combinatorial Theory, Series A,

113, 1719–1731, 2006.
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Crossing numbers

Crossing numbers

The complete bipartite graph Kr ,s can be drawn in the plane with at most Z (r , s)
edges crossing, where

Z (r , s) =

⌊

r − 1

2

⌋⌊

r

2

⌋⌊

s − 1

2

⌋⌊

s

2

⌋

.

A drawing of K4,5 with Z(4, 5) = 8 crossings.

The smallest possible number of crossings is called the crossing number: cr(Kr ,s).
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Crossing numbers

Crossing numbers (ctd.)

Conjecture (Zarankiewicz)

cr(Kr ,s) = Z (r , s).

(Open problem since Turán posed it in the 1940’s).

Lower bounds on Kr ,s may be obtained by solving

cr(Kr ,s) ≥ min
X�0,X≥0

{trace(DX ) : trace(JX ) = 1} −
⌊

s

2

⌋⌊

s − 1

2

⌋

(♥)

... where D has (r − 1)! columns indexed by the cyclic orderings on r
elements, ...

and the entries of D are ‘distances’ between pairs of cyclic orderings.

Here, GSDP = aut(D), and |GSDP | = 2r !.

Etienne de Klerk (Tilburg University) Symmetry in SDP: theory and applications ESI 2010 50 / 59



Crossing numbers

Crossing numbers (ctd.)

Using the regular ∗-representation of the SDP (♥), it was shown that

0.859Z (r , s) ≤ cr(Kr ,s) ≤ Z (r , s)

if r or s is sufficiently large.

E. de Klerk, J. Maharry, D.V. Pasechnik, B. Richter and G. Salazar. Improved bounds for the
crossing numbers of Km,n and Kn. SIAM J. Discr. Math. 20:189–202, 2006.

E. de Klerk, D.V. Pasechnik and A. Schrijver. Reduction of symmetric semidefinite programs

using the regular *-representation. Mathematical Programming B, 109(2-3):613-624, 2007.
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Quadratic assignment problem

Quadratic assignment problem (QAP)

Definition (Trace formulation (Edwards 1977))

Given are symmetric k × k matrices A (distance matrix) and B (flow matrix).

min
X∈Πk

trace(AXBXT )

where Πk is the set of k × k permutation matrices.

QAP is NP-hard in the strong sense;

Many applications, but very hard to solve in practice for k ≥ 30.
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Quadratic assignment problem

SDP relaxation of QAP

min trace(B ⊗ A)Y
subject to

trace((I ⊗ (J − I ))Y + ((J − I )⊗ I )Y ) = 0
trace(Y )− 2eTy = −k
(

1 yT

y Y

)

� 0, Y ≥ 0.































(♦)

J (resp. e) is the all-ones matrix (resp. vector);

Y corresponds to vec(X )vec(X )T for an optimal assignment X ∈ Πk .
This relaxation is equivalent to an SDP relaxation studied in:

Q. Zhao, S.E. Karisch, F. Rendl, and H. Wolkowicz. Semidefinite Programming Relaxations for
the Quadratic Assignment Problem. Journal of Combinatorial Optimization, 2, 71–109, 1998.

Y is k2 × k2 — size reduction of the SDP essential if k ≥ 15 ...
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Quadratic assignment problem

SDP relaxation of QAP: symmetry

For the QAP relaxation (♦), n = k2 + 1 and the data matrices are:

(

0 0T

0 B ⊗ A

)

,

(

0 0T

0 I ⊗ (J − I ) + (J − I )⊗ I ,

)

, and

(

0 −eT

−e I

)

,

... and the group GSDP is given by

GSDP :=

{(

1 0T

0 PA ⊗ PB

)

: PA ∈ aut(A), PB ∈ aut(B)

}

,

where A and B are the distance and flow matrices of the QAP as before.
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Quadratic assignment problem

SDP relaxation of QAP: numerical results

Several instances in the QAPlib library have algebraic symmetry, e.g. the distance
matrix is a Hamming distance matrix.

Some numerical results, after doing the SDP symmetry reduction:

instance k previous l.b. SDP l.b. (♦) best known u.b. time(s)

esc64a 64 47 98 116 13
esc128a 128 2 54 64 140

E. de Klerk and R. Sotirov. Exploiting Group Symmetry in Semidefinite Programming
Relaxations of the Quadratic Assignment Problem. Mathematical Programming, 122(2), 2010.

The traveling salesman problem (TSP) may be formulated as QAP with a
circulant distance matrix — new SDP relaxation of TSP via symmetry reduction.

E. de Klerk, D.V. Pasechnik and R. Sotirov. On semidefinite programming relaxations of the
traveling salesman problem. SIAM Journal on Optimization, 19(4), 1559–1573, 2008.
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Truss design

A truss topology optimization problem

Design a truss of minimum volume such that the fundamental frequency of
vibrations is higher that some prescribed critical value.

x

(17) (18) (19)

(20)
(21)

(22)

y

x

z

1
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3 4
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6 7
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9
10 11
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13

(1) (2)

(23) (24)

(3)
(4)

(5)

(6) (7) (8) (9) (10) (11)

(12) (13)

(15)(14) (16)

Top and front view of a dome-shaped truss
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Truss design

A truss topology optimization problem (ctd.)

SDP formulation introduced in:

M. Ohsaki, K. Fujisawa, N. Katoh and Y. Kanno, Semi-definite programming for topology

optimization of trusses under multiple eigenvalue constraints, Comp. Meth. Appl. Mech.

Engng., 180: 203–217, 1999.

The SDP has algebraic symmetry if the ground structure of nodes has
isometries ...

E.g., for the dome example the symmetry group GSDP of the SDP is (a
certain representation of) the dihedral group.

Further reading:

Y.Q. Bai, E. de Klerk, D.V. Pasechnik, R. Sotirov. Exploiting Group Symmetry in Truss

Topology Optimization. Optimization and Engineering, 10(3), 331–349, 2009.
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Conclusion

And, finally ...

Symmetry reduction in SDP is the application of representation theory to
reduce the size of specially structured SDP instances.

The most notable applications are in computer assisted proofs (bounds on
crossing numbers, kissing numbers, error correcting codes, ...)

... but also pre-processing of some SDP’s arising in optimal design (truss
design, QAP, ...)

More applications in polynomial optimization, graph coloring, ...
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Conclusion

The End

THANK YOU!
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