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Overview

Bundle Methods for Nonsmooth Convex Optimization
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Convex functions and the subdifferential

Given a convex function f : R” — R, a vector g € R" is a
subgradient of f at x if

fly) > f(x)+(g,y—x) VYyeR" “subgradient ineq.”
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Given a convex function f : R” — R, a vector g € R" is a
subgradient of f at x if

fly) > f(x)+(g,y—x) VYyeR" “subgradient ineq.”

For v = f(x) — (g, x) the pair (v, g) defines a (global) linear

minorant f(, gy of f1 f, 5(y) =7+ (g,y) < f(y)
The subdifferential of f at x is the set of all subgradients of f at x,

Of(x) ={g: f(y) =2 f(x) +(g,y =x) vy eR"}.
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Convex functions and the subdifferential
Given a convex function f : R” — R, a vector g € R" is a
subgradient of f at x if
fly)>f(x)+(g,y —x) VyeR" “subgradient ineq."

For v = f(x) — (g, x) the pair (v, g) defines a (global) linear

minorant f(, gy of f1 f, 5(y) =7+ (g,y) < f(y)

The subdifferential of f at x is the set of all subgradients of f at x,
Of(x) ={g : f(y) = f(x) + {g.y =x) Vy eR"}.

(for differentiable convex f, 0f(x) = {Vf(x)})
A closed proper convex function f : R” — R is the supremum over
its linear minorants M,

fly)= sup ~v+(g,y)
(v.8)eM

(all supporting hyperplanes of the epigraph of f)
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Convex functions and the subdifferential
Given a convex function f : R” — R, a vector g € R" is a
subgradient of f at x if
fly)>f(x)+(g,y —x) VyeR" “subgradient ineq."

For v = f(x) — (g, x) the pair (v, g) defines a (global) linear

minorant f(, gy of f1 f, 5(y) =7+ (g,y) < f(y)
The subdifferential of f at x is the set of all subgradients of f at x,

of(x)={g:f(y) > f(x) +(g,y —x) Vy eR"}.

(for differentiable convex f, 0f(x) = {Vf(x)})
A closed proper convex function f : R” — R is the supremum over
its linear minorants M,

fly)= sup v+(g )
(v.8)eEM
(all supporting hyperplanes of the epigraph of f)
Minimize nonsmooth convex functions — subgradient and bundle
methods Hiriart-Urruty and Lemaréchal 1993
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Proximal Bundle Method [Lemaréchal78,Kiwiel90]

convex function cutting plane model with g € 9f(9)
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solve augmented model — y* improve cutting plane model in y*
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Bundle M.

The main steps of Bundle Methods

Input: a convex function given by a first order oracle

1. Find a candidate by solving the quadratic model
2. Evaluate the function and determine a subgradient (oracle)

3. Decide on
e null step
e descent step

4. Update the model and iterate
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A polyhedral cutting model and its quadratic model

A closed proper convex function f : R" — R is the supremum over
its linear minorants M,

fly)= sup v+(gy) Vy € R".
(v.g)eM
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A polyhedral cutting model and its quadratic model

A closed proper convex function f : R” — R is the supremum over
its linear minorants M,

fly)= sup v+(gy) Vy € R".
(v.g)eM

Any subset MC M yields a minorizing cutting model,

fa(y) = sup_v+(g.y) < fly) VyeR"
(v.8)eM
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A polyhedral cutting model and its quadratic model

A closed proper convex function f : R” — R is the supremum over
its linear minorants M,

fly)= sup v+(gy) Vy € R".
(v.g)eM

Any subset MC M yields a minorizing cutting model,

fa(y) = sup_v+(g.y) < fly) VyeR"
(v.8)eM

Finite M yields a polyhedral model and may be written as

f— = ilyi T .
() giz(;?zaé:lZﬁ(v +g'y)

The quadratic model penalizes deviations from a current center of
stability ¥ by a quadratic term with a weight u > 0,

u
in fo —lly = 9.
min )+ 5lly =7l

Its minimizer is the next candidate y ™.
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Solving the augmented model min f;(y) + §|ly — ¥
min _max Y&+ &)+ 5ly 9P

_ : (- T Uy a2
B 51’231;:)(5/:1 myln Zf,(’y, +g'y)+ 2||y il
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Solving the augmented model min f;(y) + §|ly — ¥
min _max Y&+ &)+ 5ly 9P

_ : (- T Uy a2
B 51’2&%@21 myln Zf,(’y, +g'y)+ 2||y il

Solve unconstrained quadratic inner optimization over y explicitly:

yHO=9-1Y¢ag [u “step size/trust region control”]
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Solving the augmented model min f;(y) + §|ly — ¥
min _max Y&+ &)+ 5ly 9P

_ : (- T Uy a2
- 51’2&];:)(&':1 myln Zf,(’y, +g'y)+ 2||y il

Solve unconstrained quadratic inner optimization over y explicitly:

yr &) =y-1>¢g [u “step size/trust region control”]

Substitute for y to obtain a (convex) quadratic problem in ¢,

max Y &(vi+gT9) — £ Ggil?
(QP) s.t. Zf, =1
£>0.

small if |/ﬁ| is small, finds “a best” convex combination
— “best aggregate (minorant)” (v, g") = > & (vi &) (v &)
— new candidate yT = yT(£T). [yx]
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The Algorithm

Input: yo = j1, M\l, k€ (0,1),e >0, k=1.
1. Solve (QP) — (v,&) and yk.
If f()?k) — f‘(’y;:7glj>)(yk) < 6(|f(j7k)| + 1) then stop.
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The Algorithm

Input: yo = ¥1, M\l, k€ (0,1),e>0, k=1.
1. Solve (QP) — (v,&) and yk.

£ F(54) ~ fyp ) < (FA)| + 1) then stop.
2. Compute f(yx) and subgradient gZ, yields also ;.

Scaling
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The Algorithm

Input: yo = ¥1, M\l, k€ (0,1),e>0, k=1.
1. Solve (QP) — (v/.g&) and yx.
It f(yx) — )c(,yzr7g;r)(yk) <e(|f(¥x)|+1) then stop.
2. Compute f(yx) and subgradient gZ, yields also ;.
3. 18 F(9i) — Fyi) > KIF(I) = fir gy ()]
then descent step: set Yx+1 = Yk,
else null step: ¥x11 = Jx unchanged.
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The Algorithm

Input: yo = ¥1, M\l, k€ (0,1),e>0, k=1.
1. Solve (QP) — (v/.g&) and yx.
It f(yx) — )c(,yzr7g;r)(yk) <e(|f(¥x)|+1) then stop.
2. Compute f(yx) and subgradient gZ, yields also ;.
3. 18 F(9i) — Fyi) > KIF(I) = fir gy ()]
then descent step: set Yx+1 = Yk,
else null step: ¥x11 = Jx unchanged.

4. Find a new model so that | {(v}, &), (7, 85)} C /\7,(+1 :

Update the weight u, set kK «— k + 1, goto 1.
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The Algorithm

Input: yo = ¥1, M\l, k€ (0,1),e>0, k=1.
1. Solve (QP) — (v,&) and yk.
It f(yx) — f(,yk+7g;r)(yk) <e(|f(¥x)|+1) then stop.
2. Compute f(yx) and subgradient gZ, yields also ;.
3. 18 F(9i) — Fyi) > KIF(I) = fir gy ()]
then descent step: set Yx+1 = Yk,
else null step: yx11 = yx unchanged.

4. Find a new model so that | {(v}, &), (7, 85)} C Mis1 |
Update the weight u, set kK «— k + 1, goto 1.

Theorem. Let £ = 0 then the sequence of descent steps {yx}
satisfies f(§) — inf, f and (plus some conditions) g;" — 0.

[Lemaréchal78, Kiwiel90,. . .]

Scaling
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Important step in the proof of convergence:

Lemma. For an infinite sequence of null steps yx

. u ~
F) =~ gy () = 0 and ye = argmin £(y)+7lly =3

Thus,

either descent step after finitely many iterations

or ¥ optimal.
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Important step in the proof of convergence:

Lemma. For an infinite sequence of null steps yx

. u ~
F) =~ gy () = 0 and ye = argmin £(y)+7lly =3

Thus,

either descent step after finitely many iterations

or ¥ optimal.

The minimizer of f(-) + || - —y|| is the “proximal point” of y.
[Rockafellar76]

For null steps, yx converges to the proximal point and fﬂk (yk) to
its value.
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Idea: By (v, ,8/) € -K/l\k-i-l the next QP-value cannot decrease:

min  max  L(y,(7,8)) :=7+<ga}’>+||y—}7||2
Y (v.8)eEMisr
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Idea: By (v, ,8/) € M\k-i-l the next QP-value cannot decrease:

min = max  L(y,(7,8)) =7+ (& y)+ly =9I
Y (r.8)eEMin

| Ly (v g N +lly —wll? =

=Ly (0 .&")

<i(y)

L(y.g) |

“anull step (4/5) |
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Idea: By (v, ,8/) € M\k-i-l the next QP-value cannot decrease:

min  max  L(y,(7,8)) :Z’y+<ga}’>+||y—}7||2
Y (v.8)eEMisr

| Lk (0 8 N+ i =yl =

<i(y)

= L(yks+1. (., 81))

L(y.g) |

“anull step (4/5) |
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Idea: By (v, ,8/) € M\k+1 the next QP-value cannot decrease:

min  max  L(y,(7,8)) :=7+<ga}’>+||y—}7||2
Y (v.8)eEMisr

| Lk (0 8 N+ i =yl =

$t(y)
= L(yks+1. (., 81))
< L(yis1, (Vi1 801))

<f(y)

L(y.g) |

“anull step (4/5) |
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Idea: By (v, ,8/) € M\k+1 the next QP-value cannot decrease:

min  max  L(y,(7,8)) ::’Y+<ga)/>+||y—)7||2
Y (v.8)eEMisr

12 T

EE(\7 ) | L (i 8D Flly s =yl =

= L(yks+1. (., 81))
< L(yk1, (’72__,_1,&:_1))

<f(y)

= lyar1 — wl?— 0

y bounded
=

k41— Ykl — O
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Idea: By (v, ,8/) € M1 the next QP-value cannot decrease:

min  max  L(y,(7,8)) ::7+<ga)/>+||)/—)7||2
Y (v.8)eEMisr

12 T

o Sy ? L Ly (O 8 )+ Iy k1 =yl =
I | = Lykr1, (0 84))
RN L < Lk (08

<f(y)

= lyar1 — wl?— 0

y bounded
=

k41— Ykl — O

1 0

In a null step, (v£,8%) € M\k+1 forces y,11 away from y:

fiogen) hr1) < Fig, ) = o gy ()
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Idea: By (v, ,8/) € M\k-i-l the next QP-value cannot decrease:

min = max  L(y,(7,8)) =7+ (& y)+ly =9I
Y (r.8)eEMin

°f(y) Ly.q) | L (VS &N+ Iy k=il =
: = L(yrs1, (7 80))
< L(yis1, (Vi1 801))

L(y.g)) | <1(9)

Lstep (45). = vk — yl> = 0

y bounded

k41— Ykl — O

In a null step, (v£,8%) € .K/l\k+1 forces y,11 away from y:

o) 1) < fig, (k1) = (V1)

e 4
(V1841
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The aggregate (v, g™)

is constructed from a dual optimal QP-solution

is “the best” supporting hyperplane in conv M

is the linear minorant holding the current solution (saddle point)
needs to be contained in the next model to ensure convergence
is the object “converging” to the zero subgradient
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SDP/EV-Opt.

LP < SDP
max (¢, x) max (C, X)
st. Ax=b st. AX=b
x>0 X0
x € RT  nonneg. orthant X €8 pos. semidef. matrices
(polyhedral) (non-polyhedral)
{e,x) =2 cixi (C,X) = Zi,j CiiXij
<31,X> <A17X>
Ax = : AX = :
(@m, x) (Am, X)
ATy =37 aiyi Aly =37, Ay
min (b, y) min (b, y)
st. Aly—z=¢ st. ATly—Z=2C
z>0 Z>0
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Example
max EC,X>) min
st. (,X)=1 _
X >0 st. Z=yl—-C=0
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Example
max (C, X) min
st. (LX)=1
st. Z=yl-C*0

W:={X=0:(I,X)=1} = conv{w':(/,w’)y=vTv=1}

and IIrTI?)*(1<C’ wT) = max viCv = Amax(C)

Scaling



SDP/EV-Opt.

Example
max EC,X>) min
st. (LX)=1 _
X >0 st. Z=yl—-C*»0

W:={X=0:(I,X)=1} = conv{w':(/,w’)y=vTv=1}

and HTI?)*(1<C’WT> = max viCv = Amax(C)

set of primal optimal solutions:

conv {w’ : (I,w") =1,vT Cv = Anax(C)} [v = Pu
= conv{PuuTPT </ uu >—1}
- {PUPT : (I,U)y=1,U = 0}

columns of P form an orthonormal basis of the eigenspace of Amax(C).



SDP/EV-Opt.

Example
max EC,X>> min
st. (LX)=1 _
X >0 st. Z=yl—-C*»0

W:={X=0:(I,X)=1} = conv{w':(/,w’)y=vTv=1}

and HTI?)*(1<C’WT> = max viCv = Amax(C)

set of primal optimal solutions:

conv {w’ : (I,w") =1,vT Cv = Anax(C)} [v = Pu
= conv{PuuTPT </ uu >—1}
- {PUPT : (I,U)y=1,U = 0}

columns of P form an orthonormal basis of the eigenspace of Amax(C).

dual: min Ast. M- C>=0 = optimal A = Apax(C)
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SDP and Eigenvalue Optimization

For constant trace, the dual is an eigenvalue optimization problem

max (C,X) min_ aAmax(C — A'y) + (b, y)
st. (ILX)=a y €R”

AX =b

X =0,

(E.g., many semidefinite relaxations of comb. opt. problems satisfy this.)
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SDP and Eigenvalue Optimization

For constant trace, the dual is an eigenvalue optimization problem

max (C,X) min_ aAmax(C — A'y) + (b, y)
st. (ILX)=a y €R”

AX =b

X =0,

(E.g., many semidefinite relaxations of comb. opt. problems satisfy this.)
In the following, we assume (w.l.o.g.) a=1.

— _gT _ _yT T
f(y) = Amax(C — A'y) + (b, y) Vr‘}wea1>/<V<C Ay W)+ by

is convex and nonsmooth.



SDP/EV-Opt.
SDP and Eigenvalue Optimization

For constant trace, the dual is an eigenvalue optimization problem

max (C,X) min_ aAmax(C — A'y) + (b, y)
st. (ILX)=a y €R”

AX =b

X =0,

(E.g., many semidefinite relaxations of comb. opt. problems satisfy this.)
In the following, we assume (w.l.o.g.) a=1.

o T _ 4T T
f(y) = Amax(C — A'y) + (b, y) Vr‘}1€a1>/<v<C Ay W)+ by
is convex and nonsmooth. By the affine chain rule,
of(y) ={b—A(PUPT): (I,U) =1,U = 0}
with PTP =/ and PT(C — ATy)P = Apax(C — ATy)I.

Any eigenvector v to Amax(C — ATy) yields a subgradient b — AT(w 7).
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Eigenvalue Optimization in General

in Amax(F
min, Amax(F(y))

with F : R™ — 8™ a smooth matrix valued function.

Rich history in optimization,

for theory pointers see the survey by [Lewis 2003]

some algorithmic landmarks (not complete):

[Cullum Donath Wolfe 1975, Polak Wardi 1982, Fletcher 1985,
Overton 1988/92, Nesterov Nemirovskii 1993, Shapiro Fan 1995,
Overton Womersley 199*, Oustry 2000, Helmberg Rend| 2000,
Noll Apkarian 200*, Nesterov 2007]

Here, we concentrate on affine F,

Fly)=C-— ZA;y,-.
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SB Method

The Spectral Bundle Method [H.,RendI00]

for solving large scale eigenvalue optimization problems of the form

f(}/) = )\max(C - -ATy) + <b7y> :
Key ideas:

e The matrix C — >, Ajy; inherits the structure of cost matrix
and constraints — function value and subgradient can be

computed efficiently by iterative methods like Lanczos
methods.

e Exploit the special structure of the subdifferential in a
semidefinite cutting surface model within the bundle method.
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A semidefinite model for f(y) := Anax(C — ATy) +bTy
With W= {W =0:tr W = 1}
fy) = Vryea?fv(W, C - ATy> +bTy

evaluate by computing Amax(C — ATy), [Lanczos]
any eigenvector v to Amax, ||v|| = 1, yields a subgradient via w’ € W
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A semidefinite model for f(y) := Anax(C — ATy) +bTy
With W= {W =0:tr W = 1}
fy) = Vryg&(\/(W, C - ATy> +bTy

evaluate by computing Amax(C — ATy), [Lanczos]
any eigenvector v to Amax, ||v|| = 1, yields a subgradient via w’ € W

For any subset W, C W one obtains a cutting model

fi, (v) = max, .5, (W, C— ATy) +bTy < f(y) VyeR"
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A semidefinite model for f(y) := Anax(C — ATy) +bTy
With W= {W =0:tr W = 1}
fy) = Vryg/(\/(W, C - ATy> +bTy

evaluate by computing Amax(C — ATy), [Lanczos]
any eigenvector v to Amax, ||v|| = 1, yields a subgradient via w’ € W

For any subset W, C W one obtains a cutting model

fim, () = max 5, (W, C— ATy) + b7y < f(y) VyeR"
We use
Wi = {PeUP] + oW, trU+a=1,U = 0,a >0} cWw

with parameters P, € R™", PT P, = I,, and a “residual” W, € W.
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Example: P holds a basis of the eigenvectors of two subgradients
polyhedral model semidefinite model




SB Method

The Semidefinite Bundle

fs (v) = max (W,C—ATy)+bTy < f(y) VyeR™
k Wew,

fv\k:{PkUPkT—l—aWk:trU—i—a:l,UtO,OéZO} cw

with parameters Py € R"™", PT P, = I,, and a residual W, € W.

P should span an approximation of the eigenspace to Anax near y.

Because PUPT spans only a face on the boundary of W,
W is needed to span part of the interior of W



SB Method

The Semidefinite Bundle

fs (v) = max (W,C—ATy)+bTy < f(y) VyeR™
k Wew,

fv\k:{PkUPkT—l—aWk:trU—i—a:l,UtO,OéZO} cw

with parameters Py € R"™", PT P, = I,, and a residual W, € W.

P should span an approximation of the eigenspace to Anax near y.

Because PUPT spans only a face on the boundary of W,
W is needed to span part of the interior of W

It is possible to do without W if P is “fat” enough:

Theorem (Barvinok95,Patakio8)
An SDP max{(C, X) : AX = b, X = 0} with finite optima also has an

optimal solution of rank r bounded by (”51) <m.
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. 2 2 u _ 512
Solving the augmented model  min f5(y) + 5|ly — 7|

min max_ (C— ATy, W)+ (b,y)+ 5 lly — 9P
Y Wew

= max_min (C,W)+ (b= AW.y)+ Sy - 9|
wew 7
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. 2 2 u _ 512
Solving the augmented model  min f5(y) + 5|ly — 7|
. u ~
min  max__ (C— A", ,W>+<b,y>+§Hy—Y||2

Y wew

= max__ min (C,W) +(b— AW,y) + gHy—f/Hz
Wew ”

Solve unconstrained quadratic inner optimization over y explicitly:

yi(W)=9—1(b—Aw) [u “step size/trust region control”]
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. 2 2 u _ 512
Solving the augmented model  min f5(y) + 5|ly — 7|
. u ~
min  max__ (C— A", ,W>+<b,}/>+§Hy—}’”2

Y wew

= max__ min (C,W) +(b— AW,y) + %”y—f’”z
Wew ”

Solve unconstrained quadratic inner optimization over y explicitly:

yi(W)=9—1(b—Aw) [u “step size/trust region control”]

Substitute for y to obtain a quadratic semidefinite problem in W,

max (C— ATy, W)+ (b,9) — £ ||[b— AW/|?
st. W =PUPT +aW

trU4+a=1

U*>0,aa>0.

(QSP)

small if r is small (U € S.) — interior point system matrix ("5%) + 1 [!]
— ‘“aggregate (eps-subgradient)” W, = PU,PT +a, W [Wi]
— new candidate y; =y, (W,). [y«



SB Method

The Algorithm

Input: A,b,C, yo = ¥1, V/\71, k€(0,1),e >0, k=1
1. Solve (QSP) — W and yx.
If £(9k) — fi, (v) <e(|f ()| +1) then stop.
2. Compute Amax(C — ATy¥) and eigenvector v, yields also f(yx).
3.0 £(9n) — Fyk) > w[F(9k) — f(vi)]
then descent step: set Vi1 = Yk,
else null step: k11 = yx unchanged.

4. Find new Py, 1 and W1, so that | {w ', W} C Wk+1 .
Update the weight u, set k «— k + 1, goto 1.

Theorem. Let ¢ = 0 then the sequence of descent steps {yx} satisfies
f(§x) — inf, f and (plus some conditions) W — X*.

Minimal choice in step 4 is Px+1 = v and Wk+1 = W,.
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Eigenvalue Computation and Model Update

Important aspects in actual implementations are:

e dealing with the difficulty of clustered eigenvalues in
eigenvalue computations
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e dealing with the difficulty of clustered eigenvalues in
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e exploiting the fact that iterative methods generate an
increasing sequence of Ritz-values v’ (C — ATy)v/vTv
converging to Amax(C — ATy) from below by terminating
early whenever the null step bound is exceeded,
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o exploiting additional Ritz-pairs from iterative methods in
updating the bundle,



Evaluation/Update

Eigenvalue Computation and Model Update

Important aspects in actual implementations are:

e dealing with the difficulty of clustered eigenvalues in
eigenvalue computations

e exploiting the fact that iterative methods generate an
increasing sequence of Ritz-values v’ (C — ATy)v/vTv
converging to Amax(C — ATy) from below by terminating
early whenever the null step bound is exceeded,

o exploiting additional Ritz-pairs from iterative methods in
updating the bundle,

e updating the bundle so as to keep the most important
subspace in P.
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Eigenvalue Computation for A= C — A"y (n > 50)
Power method: a1, Aq, A%qr, ... Alg

vl Av

Lanczos Method: Amax(A) & max ) +
v € span{qy, Aqi, ..., Alqi} VY



Evaluation/Update

Eigenvalue Computation for A= C — A"y (n > 50)
Power method: a1, Aq, A%qr, ... Alg

TA
Lanczos Method: Amax(A) & max ) v + v
v € span{qi,Aq1,..., Aqi} V'V
constructs orthonormal bases Q; of span{qi, Aqy,...,A'q:} so that
a1 0 -+ 0
Br oz B2 ;
Ti=QAQ =10 8,a;s . 0 | €Si— eigenv. decomp.in O(?).
ﬁl 1
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Evaluation/Update

Eigenvalue Computation for A= C — A"y (n > 50)
Power method: a1, Aq, A%qr, ... Alg

TA
Lanczos Method: Amax(A) & max ) v + v
v € span{qi,Aq1,..., Aqi} V'V
constructs orthonormal bases Q; of span{qi, Aqy,...,A'q:} so that
a1 0 -+ 0
Br oz B2 ;
Ti=QAQ =10 8,a;s . 0 | €Si— eigenv. decomp.in O(?).
L ﬁl 1
0. 0 ﬁ/ 1 G

Qi =[q1,---,qi]; compute gi+1 by orthonormalizing Ag; to all g;,

gi . _
||E/,+1|| with  Giv1 = Agi — Q:Q Agi = Agi — a;qi — Bi—1Gi—1.
i1 —

If ||Gi+1]| = 0 = invariant subspace found [usually Amax]

di+v1 =




Evaluation/Update

Eigenvalue Computation for A= C — A"y (n > 50)
Power method: a1, Aq, A%qr, ... Alg

TA
Lanczos Method: Amax(A) & max ) v + v
v € span{qi,Aq1,..., Aqi} V'V
constructs orthonormal bases Q; of span{qi, Aqy,...,A'q:} so that
a1 B 0 -+ 0
Br oz B2 ;
Ti=QAQ =10 8,a;s . 0 | €Si— eigenv. decomp.in O(?).
L ﬁl 1
0. 0 ﬁ/ 1 G

Qi =[q1,---,qi]; compute gi+1 by orthonormalizing Ag; to all g;,

Git+1 . _
Gis1 = 2 with G = Agi — QQ Agi = Agi — 0iqi — Bi—1qi-1.
@it l
If ||Gi+1]| = 0 = invariant subspace found [usually Amax]

trouble: g; loose orthogonality quickly
— complete orthogonalization, restart every n; iterations to keep @ small
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)\max - A2
)\max - )\min
trouble: in eigenvalue optimization clustering around Anax is generic

Convergence: the better the larger [ignore multiplicities]
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e compute polynomial p(-) by matrix vector multiplications

e but: Lanczos provides best polynomial
— tradeoff: cost of polynomial to cost of orthogonalization
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Spectral transformation: apply Lanczos to p(A) to increase L}f
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e compute polynomial p(-) by matrix vector multiplications

e but: Lanczos provides best polynomial

— tradeoff: cost of polynomial to cost of orthogonalization

Inexact evaluation for null steps

L4 )\max(Ti) T /\max(A)

e before each restart check whether A\,ax(T;) ensures null step.
if yes — STOP
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Amax — A . C
Convergence: the better the larger —=*— "2 [ignore multiplicities]
>\max - >\min
trouble: in eigenvalue optimization clustering around Anax is generic

. . Amax — A
Spectral transformation: apply Lanczos to p(A) to increase L}f

max — \min
e compute polynomial p(-) by matrix vector multiplications

e but: Lanczos provides best polynomial
— tradeoff: cost of polynomial to cost of orthogonalization

Inexact evaluation for null steps

L4 )\max(Ti) T /\max(A)

e before each restart check whether A\,ax(T;) ensures null step.
if yes — STOP

Lanczos (Ritz-)vectors:

e | = eigenvectors of Q,-T,-Q,-T [usually “Ritz vectors”]
e at exit n; available

e often good estimates for large eigenvalues of A

— valuable for forming the bundle P

e for each eigenvalue of A, L holds at most one Ritz vector
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The Bundle Update: P W,L — P., W+

W, must contain W, and w for convergence.

Solving (QSP) with an interior point code yields
W, =PUPT +a, W
Keep “important” eigenspace of PU.PT in the bundle.

Scaling
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The Bundle Update: P W,L — P., W+

W, must contain W, and w for convergence.

Solving (QSP) with an interior point code yields
W, =PUPT +a, W
Keep “important” eigenspace of PU.PT in the bundle.

v—tael| oy el

@1 holds at most nk eigenvectors to large eigenvalues of U,
where “large” means  Apin(A1) > tAmax(UL) for some t > 0.



Evaluation/Update

The Bundle Update: P W,L — P., W+

W, must contain W, and w for convergence.

Solving (QSP) with an interior point code yields
W, =PUPT +a, W
Keep “important” eigenspace of PU.PT in the bundle.

v—tael| oy el

@1 holds at most nk eigenvectors to large eigenvalues of U,
where “large” means  Apin(A1) > tAmax(UL) for some t > 0.

W,y = PQl/\1Q1TPT + PQQAQQQTPT +a W

— W,
e keep subspace spanned by PQ; in the bundle
e add subspace of some na Lanczos vectors with largest Ritz values

+  PQA(PQ)T +atW

+_ _
P = orth([PQ1, L]) w trAp + at




Evaluation/Update

Computer Session Thursday, 11:00-12:30

C++ callable library ConicBundle
(see “Software” on my home page)

begin with explaining a given code for the max-cut relaxation

you will then be asked to extend it to equipartition/bisection

finally, all participants will be asked to choose some related
combinatorial relaxation and to try to implement it on their
own or to extract primal information for rounding.

Please participate only, if you like to implement things and to play
around with optimization codes!
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Box Constraints for Bundle Methods

Frequently some variables of y € R" are sign constrained (e.g., as dual
variables to inequality constraints) or constrained to intervals.
For one technique to deal with this, consider the simplified scenario

min f(y):= sup v+(g,y)
YERT (v.8)EM
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Box Constraints for Bundle Methods

Frequently some variables of y € R" are sign constrained (e.g., as dual
variables to inequality constraints) or constrained to intervals.
For one technique to deal with this, consider the simplified scenario

min f(y):= sup v+(g,y)
YERT (v.8)EM

Extend f to f : R™ — R U {oo} by setting

fly) = sup Y+ (g —1ny) (y eR™M)
(v,8)eEM,neERT



Box Constraints

Box Constraints for Bundle Methods

Frequently some variables of y € R" are sign constrained (e.g., as dual
variables to inequality constraints) or constrained to intervals.
For one technique to deal with this, consider the simplified scenario

min f(y):= sup v+(g,y)
YERT (v.8)EM

Extend f to f : R™ — R U {oo} by setting

fly) = sup Y+ (g —1ny) (y eR™M)
(v,g)eEM neRT

For a compact convex model M C M the QP subproblem still satisfies

. u ~112
inf  sup 7+<g—n,y>+§|\y—yll =
YER™ (4,g)e M mer+

. u A2
= sup inf v +{g—ny)+35ly -7l
(v.8)eMnert Y

. . a1
Solve the inner problem for y: vy ((v.8)m) =y — (g —n)
but the resulting QP in (v, g) and 1 might be expensive to solve.
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Gauss-Seidel for Box-Constraints  [H.,Kiwiel2002]

Instead of directly solving

sup v+ (g —n.9) — 5llg =l
(7v.8)eEM,nERT

note that for fixed (y, g) finding optimal 1 > 0 is easy,

Nmax(g) := max{0,g — uy}



Bundle M SDP/EV-Opt SB Method Evaluation/Update Box Constraints Primal Aggr. Dynamic BM Scaling

Gauss-Seidel for Box-Constraints  [H.,Kiwiel2002]

Instead of directly solving

sup v+ (g —n.9) — 5llg =l
(7v.8)eEM,nERT

note that for fixed (y, g) finding optimal 1 > 0 is easy,
Nmax(g) = max{0, g — uy}
yielding  y™ = ymin((7,8) Mmax(g)) > 0 with  (y™*, 7max(g)) = 0.
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Gauss-Seidel for Box-Constraints  [H.,Kiwiel2002]

Instead of directly solving

sup v+ (g —n.9) — 5llg =l
(7v.8)eEM,nERT

note that for fixed (y, g) finding optimal 1 > 0 is easy,
Nmax(g) = max{0, g — uy}
yielding  y™ = ymin((7,8) Mmax(g)) > 0 with  (y™*, 7max(g)) = 0.

Starting with some (y+,g+) € M, set 5+ = nmax(g™) and iterate:

(a) For fixed ™ find (y*,g") € Argmax(QP(n™))
[as in the unconstrained case]



Bundle M SDP/EV-Opt SB Method Evaluation/Update Box Constraints Primal Aggr. Dynamic BM Scaling

Gauss-Seidel for Box-Constraints  [H.,Kiwiel2002]

Instead of directly solving

sup v+ (g—n.9) — 5lle —nl’
(7v.8)eEM,nERT

note that for fixed (y, g) finding optimal 1 > 0 is easy,
Nmax(g) = max{0, g — uy}
yielding  y™ = ymin((7,8) Mmax(g)) > 0 with  (y™*, 7max(g)) = 0.

Starting with some (y,g7) € M, set nt = Nmax(g™) and iterate:
(a) For fixed ™ find (y*,g") € Argmax(QP(n™))

[as in the unconstrained case]
(b) Set 7" —mmax(8T) and ¥y ymin((vF,87),77)

until the error
f/\?(y+) - (v*,g*)(y+) < "fM[f(}A/) - f(w*,g*)(y+)1

is small for some ky; > 0.
[converges, because ((7v",g™),n") serves as aggregate of the model]
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The Algorithm for Nonnegative Variables

Input: Yo = J1, some (’yo+,g0+) eMy, ke (0,1), km >0, >0, k=1
1. (Candidate finding) Set n™ = n%.. (g ).
(a) For fixed " find (y+, g") € Argmax(QPx(n™)).
(b) Set 7" nmax( T) and vyt ey (g ).
(c) I ()/k) w g)(7k) <e([f(J)| +1) then stop.
(d) I f7, (") = fire gy (V) < mlF(9) = fy ) (yT)] goto (a).
(

+

e) Set =y (v,8)=0"e") i =0t



Box Constraints

The Algorithm for Nonnegative Variables

Input: Yo = J1, some (’yo+,g0+) €M, ke (0,1), km >0, >0, k=1
1. (Candidate finding) Set n™ = n%.. (g ).
(a) For fixed n* find (v+, g7) € Argmax(QPx(n™)).
(b) Set 0" nmax( ) and yt e~y (v g7 ).
(c) If (J/k) w g1 (i) <e(|f(J%)| + 1) then stop.
(d) If f5z, (v ) frr g (Y ) < EmMIF(P) = fioe g+)(yT)] goto (a).
(e) Set y =y (vi.&)=("g") i =0t
2. Compute f(yx) and subgradient g7, yields also ~;.
306 £(9ic) — F(vie) > KIF(I) — fio gy (vl
then descent step: set Yx11 = Yk,
else null step: yx1+1 = yx unchanged.

4. Find a new model so that | {(v{, &), (75, 85)} C M\k+1 :
Update the weight u, set kK +— k + 1, goto 1.

Theorem. Let ¢ = 0 then the sequence of descent steps {yx} satisfies
(%) — inf,>o f and (plus some conditions) g,” — 1 — 0.
[in fact, doing (a) and (b) just once suffices for convergence]
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Primal Aggregation in Lagrangian Relaxation [folklore]

Bundle methods are often employed for solving Lagrangian relaxations of
linear constraints,

max CTX

st. Ax<b & max ¢’ x+ inf (b—Ax)Ty
x € conv Q x€conv Q2 y>0
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Primal Aggregation in Lagrangian Relaxation [folklore]

Bundle methods are often employed for solving Lagrangian relaxations of
linear constraints,
T

max c'x
st. Ax<b & max ¢’ x+ inf (b—Ax)Ty
x € conv Q x€conv Q2 y>0

No duality gap under a regularity assumption (e.g., conv Q compact):

H f — T _AT T
min f(y):= b’y + max(c y) ' x
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Primal Aggregation in Lagrangian Relaxation [folklore]

Bundle methods are often employed for solving Lagrangian relaxations of
linear constraints,
T

max c'x
st. Ax<b & max ¢’ x+ inf (b—Ax)Ty
x € conv Q x€conv Q2 y>0

No duality gap under a regularity assumption (e.g., conv Q compact):

H f — T _AT T
min f(y):= b’y + max(c y) ' x

Bundle methods generate yx — y. € Argmin . f(y) (if #0),
but what about x*?
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Primal Aggregation in Lagrangian Relaxation [folklore]

Bundle methods are often employed for solving Lagrangian relaxations of
linear constraints,

max c'x
st. Ax<b & max ¢’ x+ inf (b—Ax)Ty
x € conv Q x€conv Q2 y>0

No duality gap under a regularity assumption (e.g., conv Q compact):

H f — T _AT T
min f(y):= b’y + max(c y) ' x

Bundle methods generate yx — y. € Argmin . f(y) (if #0),
but what about x*?

Evaluating f(yx) requires solving max,cq (c — ATy) T x and yields
x§ € Argmax (c — ATy)Tx
XEQ

s _ Tys
Tk = € Xk

gk = b— Axg



Primal Aggr.

Quadratic Subproblem for M = {(71,81).- .-, (Vh. &n.)}

min max vi+(gi—n)Ty + Ly -9I°
Y20 (4,8)€M,n>0

equivalently (for fixed n > 0)

max S &(vi+ (g —n)79) — IS &g — 0l
st. fTe=1
£>0.

Need only two: (y*,g%) = "¢ (vi, &) and the new (7, g°)

Theorem
If Argmin f #£ 0 (and ++),
the proximal bundle method yields (> &igi —n) — 0 and >_ &ivi — f..

In Lagrangian relaxation v; = c'x;, gi = b— Ax; for x; € Q (or conv Q)
> &gi—n = b—AQC&x)—n  —0 [ >0 slacks]
c'(X&x) —*h

Accumulation points of >_ £kxX (4++4) are optimal solutions (for conv Q)



Primal Aggr.

Quadratic Subproblem for convex compact (e-g., W for SDP)

max c'x+(b—Ax—n)Ty—1 |b— Ax —n|?

s.t. X € ﬁ

Need only two in the next §+:

o the aggregate solution x* € Q
e and a new x° €  supplied by the oracle

Primal Approximation in Lagrangian Relaxation:
Theorem = for an appropriate subsequence

b—Axf—n —0

<:T)<k+ — £

Accumulation points of x;” (++) are optimal solutions (for conv )
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L] W+ = PU+PT+C¥+W—>X*
For huge X storing W in full may be too expensive, but
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Primal Aggregation for Large Scale SDPs
L] W+:PU+PT+C¥+W—>X*

For huge X storing W in full may be too expensive, but
e by the bundle update rule, a, is mostly small and PU,PT may suffice,
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Primal Aggregation for Large Scale SDPs
o« W, = PUPT +a, W — X,

For huge X storing W in full may be too expensive, but
e by the bundle update rule, oy is mostly small and PU,PT may suffice,
e aggregation of W may be restricted to the required support exclusively
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Primal Aggregation for Large Scale SDPs
o« W, = PUPT +a, W — X,

For huge X storing W in full may be too expensive, but
e by the bundle update rule, a, is mostly small and PU,PT may suffice,

e aggregation of W may be restricted to the required support exclusively
e the bundle method does not need W, but only (C, W) and AW



Primal Aggr.

Primal Aggregation for Large Scale SDPs
.W+ PU+PT+04+W—>X

For huge X storing W in full may be too expensive, but
e by the bundle update rule, a, is mostly small and PU,PT may suffice,

e aggregation of W may be restricted to the required support exclusively
e the bundle method does not need W, but only (C, W) and AW

The quadratic semidefinite subproblem

max 1 {svec U] T {Qn Q12:| {svec U] + [q} T{svec U] d

2| o 9 G o o) o
st. a+trU=1
a>0,U*>0
where

1 m
Qi =- E svec(PTA,-P) SveC(PTA,'P)T a _SVeC(PT[AT(
u
i=1

b—9)+ C]P)
qi2 = L svec(PT AT(AW)P) =((ib—y,AW) + (C,

w))

g2 =1 (AW, AW) d:<b,§/—ﬁb>
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Dynamic Bundle Methods [H. 2004]

If Lagrangian relaxation is applied to a primal cutting plane approach,

T

maxX ¢ X
st. Ax<b & max ¢’ x+ inf (b—Ax)Ty
x € conv Q x€Econv Q y>0

then Ax < b is constantly changing, so the dimension of the dual problem
changes as well — dynamic bundles methods [BelloniSagastizabal2009]

Scaling
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maX CTX
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then Ax < b is constantly changing, so the dimension of the dual problem
changes as well — dynamic bundles methods [BelloniSagastizabal2009]

Key idea: separate with respect to the current aggregate x,f
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If Lagrangian relaxation is applied to a primal cutting plane approach,

T

maxX ¢ X
st. Ax<b & max ¢’ x+ inf (b—Ax)Ty
x € conv Q x€Econv Q y>0

then Ax < b is constantly changing, so the dimension of the dual problem
changes as well — dynamic bundles methods [BelloniSagastizabal2009]

Key idea: separate with respect to the current aggregate x,f

Difficulties:

e x1 is ‘never’ feasible for all given constraints

— the same inequalities may be separated again and again

— separation routines can ‘conceal’ certain violated inequalities



Dynamic Bundle Methods [H. 2004]

If Lagrangian relaxation is applied to a primal cutting plane approach,

max c’x
st. Ax<b & max ¢’ x+ inf (b—Ax)Ty
x € conv Q x€Econv Q y>0

then Ax < b is constantly changing, so the dimension of the dual problem
changes as well — dynamic bundles methods [BelloniSagastizabal2009]

Key idea: separate with respect to the current aggregate x,f

Difficulties:

e x1 is ‘never’ feasible for all given constraints

— the same inequalities may be separated again and again

— separation routines can ‘conceal’ certain violated inequalities

What kind of separation oracle do we need?
Is it still possible to guarantee convergence to the optimal solution?



Dynamic BM

Maximum violation oracle with respect to Ax < b:
e returns inequalities from a finite inequality system

alx<bj, ie{l,....m}

o for a given x* the oracle either
o asserts feasibility of x™, or
o returns an inequality j € {1,..., m} with
b; — aJ-TxJr < ml_in b —alx* <.

[many separation routines satisfy this]



Dynamic BM

Maximum violation oracle with respect to Ax < b:
e returns inequalities from a finite inequality system

alx<bj, ie{l,....m}

o for a given x* the oracle either
o asserts feasibility of x™, or
o returns an inequality j € {1,..., m} with
b; — aJ-TxJr < ml_in b —alx* <.

[many separation routines satisfy this]

Cutting plane algorithm 1
le.g., for max (C, X) st. X e {X =0:([,X) =a} Nn{X: AX < b}]

1. Solve quadratic model — x*
If oracle(x™) returns a new inequality, add it and go to 1
. Evaluate function, determine subgradient
3. Decide on
e null step
e descent step
. Update model and iterate

N

N



Dynamic BM

Theorem. If the primal problem (for all m constraints) has an optimal
solution then the algorithm converges to an optimal solution and
generates a subsequence K C N so that all cluster points of X:_, ke K,
are primal optimal solutions.
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Theorem. If the primal problem (for all m constraints) has an optimal
solution then the algorithm converges to an optimal solution and
generates a subsequence K C N so that all cluster points of X:_, ke K,
are primal optimal solutions.

Proof idea:
1. Wait till the oracle adds no more inequalities to index set J (finite)
2. Apply convergence theorem to problem specified by subsystem J

= there is subsequence K with x;r — X feasible and optimal for J
= violation — 0 on inequalities J

Maximum violation oracle = all are satisfied for x7



Dynamic BM

Theorem. If the primal problem (for all m constraints) has an optimal
solution then the algorithm converges to an optimal solution and
generates a subsequence K C N so that all cluster points of X:_, ke K,
are primal optimal solutions.

Proof idea:
1. Wait till the oracle adds no more inequalities to index set J (finite)
2. Apply convergence theorem to problem specified by subsystem J

= there is subsequence K with x;r — X feasible and optimal for J
= violation — 0 on inequalities J

Maximum violation oracle = all are satisfied for x7

Is it possible to eliminate inactive inequalities during runtime?
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Cutting plane algorithm 2
[e.g., for max (C, X) st. X e {X = 0: (I, X) =a} Nn{X: AX < b}]
1. Solve quadratic model — x*

If oracle(x™) returns a new inequality, add it and go to 1
2. Evaluate function, determine subgradient
3. Decide on
e null step
e descent step: delete inequalities inactive for x™
4. Update model and iterate
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Cutting plane algorithm 2
[e.g., for max (C, X) st. X e {X = 0: (I, X) =a} Nn{X: AX < b}]
1. Solve quadratic model — x*

If oracle(x™) returns a new inequality, add it and go to 1
2. Evaluate function, determine subgradient
3. Decide on
e null step
e descent step: delete inequalities inactive for x™
4. Update model and iterate

Theorem. If the primal has a strictly feasible solution then the upper
bound converges to the optimal value and the algorithm generates a
subsequence K C N so that all cluster points of X;“, k € K, are primal
optimal solutions.

The strictly feasible primal solution ensures boundedness of dual iterates
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Minimum Bisection Relaxation, LP vs. SDP [AFHM2008]

1500

1000

taq.1021.6365

1021 nodes, 6365 edges

ipall
Ip bkw
Ipkt
Ip oc
—#— sdp bkw
—o—sdpall
—x—sdpkt
sdp none

—6—sdp oc

gap 26698841

2669 nodes, 8841 edges
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Second Order Approaches

[Overton8*, OvertonWomersley95, Oustry200%]

Local quadratic convergence for correct multiplicity t in the optimum y*,
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Second Order Approaches

[Overton8*, OvertonWomersley95, Oustry200%]
Local quadratic convergence for correct multiplicity t in the optimum y*,

C—AT)/ :[Qle] ! * [Qle]T
0 N
T:...:)\;‘>)\r+1>...>)\:
1. Guess tx, compute Qf, Qﬁ‘ and an interior subgradient Uy by
min||b— AQUQ/ |I>s.t. trU=1, U>0
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Second Order Approaches

[Overton8*, OvertonWomersley95, Oustry200%]
Local quadratic convergence for correct multiplicity t in the optimum y*,

c-ay —1eiai1 | i 2 |1eres
Al ==X >X > > A,
1. Guess tx, compute Qf, Qﬁ‘ and an interior subgradient Uy by
min||b— AQUQ/ |I>s.t. trU=1, U>0
2. Compute the Newton candidate by solving

min 3y — Pullz, + (b,y) + 6
st. 0l =Q/(C—ATy)Q

where

He = 2A (QuUkQ) ® (Q[Af1 — AS]T1Q))) AT [regularity = 0]
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Second Order Approaches

[Overton8*, OvertonWomersley95, Oustry200%]
Local quadratic convergence for correct multiplicity t in the optimum y*,

c-ay —1eiai1 | i 2 |1eres
Al ==X >X > > A,
1. Guess tx, compute Qf, Qﬁ‘ and an interior subgradient Uy by
min||b— AQUQ/ |I>s.t. trU=1, U>0
2. Compute the Newton candidate by solving

min 3y — Pullz, + (b,y) + 6
st. 0l =Q/(C—ATy)Q

where

He = 2A (QuUkQ) ® (Q[Af1 — AS]T1Q))) AT [regularity = 0]

[Hily = 2tr[(Q) AiQ2) Uk(Q A Q) (AfT — A5) 7]
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Adaptation of Step 2 for Spectral Bundle [H.RendlOverton]

min Ly — 7113+ (b,y) + 6

st. 0l =Q(C—ATy)Q is relaxed to

Step 2

min 3lly = 9llf + (b,y) + 6

_ T~ 4T
st. 0l = Qf(C—ATy)@u, = 0= Amax(Q; (C — A" y)@u).
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Adaptation of Step 2 for Spectral Bundle [H.RendlOverton]

min 3y = 9lif + (b,y) +6

st. 0l =Q(C—ATy)Q is relaxed to

Step 2

min 3y = 9l + (b,y) + 4

_ T~ 4T
st. 0l = Qf(C—ATy)@u, = 0= Amax(Q; (C — A" y)@u).

With W := {QUQ : tr U =1, U = 0} the problem reads

. 1 {7
min maz<\<W, C — ATy> +bTy+ Sy _YH%-I
Y wew -
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Adaptation of Step 2 for Spectral Bundle [H.RendlOverton]

min 3y = 9lif + (b,y) +6

st. 0l =Q(C—ATy)Q is relaxed to

Step 2

min 3y = 9l + (b,y) + 4

_ T~ 4T
st. 0l = Qf(C—ATy)@u, = 0= Amax(Q; (C — A" y)@u).

With W := {QUQ : tr U =1, U = 0} the problem reads

. 1 {7
min maz<\<W, C — ATy> +bTy+ Sy _YH%-I
Y wew -

Dualize, then yi(W)=9—HY(b— AW)

min  3(|b— AW|2,_, — (W,C — ATg) — (b, 9)
trU=1
U= 0.

(QsP)
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Scope of a second order bundle method

If QSP is solved by an interior point method with ¢ columns,

each iteration of QSP requires the factorization of a (“gl) matrix.

For m constraints we can expect t ~ /m.
— Several O(m3) operations for each solution of QSP.



Scope of a second order bundle method

If QSP is solved by an interior point method with ¢ columns,

each iteration of QSP requires the factorization of a (“gl) matrix.

For m constraints we can expect t ~ /m.
— Several O(m3) operations for each solution of QSP.

Typically, a full interior point code requires several O(n®) and one
O(m?3) operation per iteration.

— Second order SB is unlikely to be attractive for m > n,
but might be relevant for small m < n or if t is small.

— Emphasis on large n and rather small m.

Scaling
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min. norm subgradient, compute diagonal of Newton H (+p/)



Scaling
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Modified Newton: use explicit eigenvalue decomposition,
min. norm subgradient, compute full Newton H (+pl)

Diagonal Newton: use explicit eigenvalue decomposition,
min. norm subgradient, compute diagonal of Newton H (+p/)

Low-Rank Newton: collect approximate subspace to large
eigenvalues, use subgradient W, of (QSP), approximate
Newton matrix with available information (+p/)



Scaling

Scaling Variants

No scaling, bounded bundle

No scaling, fat bundle

Modified Newton: use explicit eigenvalue decomposition,
min. norm subgradient, compute full Newton H (+pl)
Diagonal Newton: use explicit eigenvalue decomposition,
min. norm subgradient, compute diagonal of Newton H (+p/)

Low-Rank Newton: collect approximate subspace to large
eigenvalues, use subgradient W, of (QSP), approximate
Newton matrix with available information (+p/)

Diagonal Low-Rank: Collect approximate subspace to large
eigenvalues, use subgradient W, of (QSP) and the diagonal
of approximate Newton matrix (+p/)
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Low Rank Structure
H=2A4((QuUQT) ® (@) ~ Aol 1@f)) AT
decompose U = Qu/\uQJ—, set Q1 = @ Q, and rewrite H as
H =24 (@8 Q)M ® Dal = Al ™) (@ @ @])) AT

Truncate [A1/ — A]i..p and Q2 — Qp,
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Low Rank Structure
H=2A4((QuUQT) ® (@) ~ Aol 1@f)) AT
decompose U = Qu/\uQJ—, set Q1 = @ Q, and rewrite H as
H=2A ((Ql @ Q) Ay @ Ml — A ™H)(QL ® QQT)> AT

Truncate [A1/ — A2]1 » and Q2 — Qp,
compute a QR-decomposition of A(Q; ® Q) — QuR

Hy = 2Qa R(A @ I\l — Aol )RT QF

— QMQT, Qui= QaQ
truncate Ay — /A\H, (A?H
— Il‘\l =pl + 2©H/A\HQIZI—

for some regularization parameter p > 0.
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Implementation Details

Multiplicity Detection.

Starting with the eigenvalue/vector pair following the maximum

eigenvalue of (QSP)-solution U we check iteratively

e whether it is smaller than barrier parameter times )\max(U)

e whether the Ritz gap to Amax(C — A'y) is big enough

e whether the Ritz gap is reasonable and the value is small
compared to its dual value

If one of the three criteria holds, this fixes the multiplicity guess t.

Bundle Update.

After null steps we include the new eigenvector, the t top most of

U plus some number of the best Ritz vectors orthogonal to this

subspace (taken from a collected set of vectors). We use the

aggregate.

After descent steps we take the t best Ritz vectors into the bundle

and enlarge it a bit further if this subspace differs from the old t

top most bundle vectors. The aggregate is deleted if H changes.
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45

Number of probelms solved

5

M SDP/EV-Opt SB Method

Evaluation/Update

Box

Constraints Primal Aggr. Dynamic BM Scaling

Small Instances: n € {100, 300,500} and m = 500

=

Time required for relative precision 0.0001

—CB-old

CB-ns
—CB-fN

CB-dN
—CB-dIrN

CB-IrN

—SDPT3

CPU-seconds in‘Iuogarithmic scale

Number of probelms solved

Time required for relative precision 1e-06

—CB-old ||
CB-ns ||
—CB-fN
CB-dN ||
— CB-dIrNj
CB-IrN ||
—SDPT3

CPU—secondsmin logarithmic scale

Five instances per choice of n and constraint support order € {3,5,7}
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Larger Instances: n € {1,...,6}-1000 and m = 1000

Time required for relative precision 0.0001 Time required for relative precision 1e-06

N

2 r 3

= 60 / 5 6oF

8 rd w

D 5 N 5L

E E

Q [0}

QO wp O a0

g o

= &

ot ol

@ .ol —CB-old D ol —CB-old ||
€ —CB-dIrN 2 —CB-dIrN
2 10p CB-IrN 2 1of CB-IrN

—SDPT3 —SDPT3

CPU—secoHds in Iogarithmicwscale CPU-seconds in logarithmic scale

Five instances per choice of n and constraint support order € {3,4,5}
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Max-Cut 3D-Grids: n®, n € {10, 15,20, 25}

Time required for relative precision 0.0001 Time required for relative precision 1e-06

Number of probelms solved

—

) 1 |
m
ayl

Number of probelms solved

—SDPT3

I o = 0 0 v o 0
CPU-seconds in logarithmic scale CPU-seconds in logarithmic scale

Five instances with random 41 edge weights per choice of n



Scaling

Scaling works well and behaves as expected:

The number of oracle calls is reduced significantly
Newton < Low Rank < fat Bundle
Newton is attractive for small matrices and many constraints,
but interior point methods seem preferable.

[In the end the QSP system is of size O(m).]
Diagonal low rank scaling is attractive for large matrices and
few constraints.
Scaling allows a relative precision of 1070 routinely with fast
initial convergence.
The cost of solving QSP might be reducible by Toh's
approach.



Scaling

Scaling works well and behaves as expected:

The number of oracle calls is reduced significantly
Newton < Low Rank < fat Bundle
Newton is attractive for small matrices and many constraints,
but interior point methods seem preferable.

[In the end the QSP system is of size O(m).]
Diagonal low rank scaling is attractive for large matrices and
few constraints.
Scaling allows a relative precision of 1070 routinely with fast
initial convergence.
The cost of solving QSP might be reducible by Toh's
approach.

— Scaled SB should be a good choice for fast low precision
results, cutting plane approaches, or high precision results with
large matrices and few constraints.



Thank you for your attention!
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