
ESI Summer Institute,
Nonlinear Methods in

Combinatorial Optimization
Florian Jarre,

Univ. Düsseldorf

Klagenfurt, Aug. 20 – Sept. 3, 2010

– p. 1



Accelerated Projection Methods for
Semidefinite Programs

– p. 2



Outline

The problem and assumptions

A semismooth approach
for Solving Semidefinite Programs

Further theoretical results

Numerical experiments

– p. 3



Semidefinite Program

minimize C • X | A(X) = b̄, X � 0.

Here,

C • X := 〈C,X〉 :=
∑

i,j

Ci,jXi,j = trace (C⊤X)

and
A(X) = (A(1) • X; . . . ;A(m) • X) ∈ IRm.
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Notation

Let L := {X | A(X) = 0} and A∗(y) :=
∑m

i=1 yiA
(i) then,

L⊥ = {S | S = A∗(y) for some y ∈ IRm}

and the dual problem can be written as

maximize b̄T y | A∗(y) + S = C, S � 0

or
minimize B • S | S ∈ L⊥ + C, S � 0

where B is some matrix with A(B) = b̄ .
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More general format

Let K be a pointed closed convex cone with nonempty
interior in some Euclidean space E

and let L be a subpace of E.

(For semidefinite programs K := {X = XT | X � 0}.)

We formulate a convex conic program in general form:

minimize 〈c, x〉 | x ∈ K ∩ (L + b).
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Normalization of the data

One can easily normalize the data and assume (without
loss of generality) that

b ∈ L⊥ and ‖b‖2 = 1.

c ∈ L and ‖c‖2 = 1.

Moreover, we assume (with slight loss of generality) that
the interior point condition holds:

∃x ∈ int(K) ∩ L + b, ∃s ∈ int(KD) ∩ L⊥ + c.
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Optimality conditions (Nesterov, Nemirovski 1994)

Then,

(P ) minimize 〈c, x〉 | x ∈ K ∩ (L + b)

and its dual

(D) minimize 〈b, s〉 | s ∈ KD ∩ (L⊥ + c)

satisfy strong duality, i.e. x is optimal for (P ) if, and only if,
there exists a point s feasible for (D) with

〈c, x〉 + 〈b, s〉 = 0.

We denote such x and s by xopt and sopt.
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Augmented Primal Dual Approach (APD)

Let the affine subspace A ⊂ E × E be defined as

A := (L + b) × (L⊥ + c) ∩ {(x; s) | 〈c, x〉 + 〈b, s〉 = 0}

and the full dimensional closed convex cone K ⊂ E × E as

K := K × KD.

Solving (P ) is equivalent to finding z := (x; s) ∈ A ∩ K.
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Intersection, cone and affine subspace
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Using projections?

Given z ∈ E × E, it is often very cheap to compute the
orthogonal projection of z onto A or onto K.

Projection onto K:

LP: order n. (x → x+.)
SOCP: order n. (Straightforward, 3 cases...)

SDP: order n3. (Set negative eigenvalues to zero.)
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Projection onto A

Let
L + b = {x | Ax = Ab} ⊂ IRn.

Then,
ΠL+b(x) = x − AT (AAT )−1A(x − b)

and
ΠL⊥+c(s) = s − (I − AT (AAT )−1A)(s − c).

Cholesky factor of AAT computed once during the overall
algorithm. (Often by orders of magnitude cheaper than one
interior-point iteration.)

(Once AAT is factored, it is cheap to replace b with Π
L⊥ (b) and c with ΠL(c).)
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Computation of the projection onto A

Let
A1 := (L + b) × (L⊥ + c)

and
A2 := {(x; s) | 〈c, x〉 + 〈b, s〉 = 0}

Then A = A1 ∩A2.

Since
b ∈ L⊥ and c ∈ L

we have
ΠA = ΠA1

ΠA2
= ΠA2

ΠA1
.
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Simple projection method

Let z0 ∈ A be given. Set k = 0.

1. Set ẑk := ΠK(zk).

2. Set zk+1 := ΠA(ẑk).

3. Set k = k + 1. Go to Step 1.
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Simple projection method
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Minimizing a differentiable convex function

For a closed set C and a vector z̄ we denote the distance of
z̄ to C by

d(z̄, C) := min{‖z − z̄‖2 | z ∈ C}.

All we need is a point in A, i.e. a point z such that

φ(z) :=
1

2
d(z,K)2 = 0,

i.e. such that the differentiable convex function φ is
minimized.
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Differentiating φ

Let C be a closed convex set and let ΠC be the orthogonal
projection (with respect to the Euclidean norm) onto C.
Then,

d(z, C) = ‖z − ΠC(z)‖2,

and the gradient of the differentiable function
fC(z) := 1

2d(z, C)2 is given by

∇fC(z) = z − ΠC(z).
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Restriction to A

Let

φ̃(z̃) := φ(z̃) =
1

2
d(z̃,K)2 for z̃ ∈ A.

Then,
∇φ̃(z̃) = z̃ − ΠA(ΠK(z̃)).

A steepest descent step with step length 1 for minimizing φ̃

starting at a point z̃ = zk ∈ A is the same as the
computation of zk+1 with the projection algorithm.

– p. 19



L-BFGS-algorithm

Let z̃0 ∈ A be given. Let ∆z̃0 := −∇φ̃(z̃0). Set k = 0.

1. Let λk := argmin{φ̃(z̃k + λ∆z̃k) | λ > 0}.

2. Set z̃k+1 := z̃k + λk∆z̃k.

3. Compute ∆z̃k+1 from ∆z̃k and ∇φ̃(z̃k+1) with L-BFGS
update formula.

4. Set k := k + 1. Go to Step 1.
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Handicap for SDP-case

Hessian of φ̃ at the optimal solution is typically singular,
even when the primal-dual optimal solution is unique and
strictly complementary. (2×2-example)
More precisely, the Hessian does not exist, but the
generalized Hessian contains singular matrices.

Result observed in preliminary experiments

The L-BFGS-method for minimizing φ̃ converges rapidly in
the inital stage of the algorithm, and then slows down.
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A local acceleration

Let
f̃(Z) = f̃(X,S) := ‖XS − SX‖2

F .

The non convex function f̃ is minimized at Zopt. It is
differentiable and the derivative can be computed with three
matrix-matrix multiplications.
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Second order growth condition (J’, Rendl, 2007)

The gradient of f̃ + φ̃ is strongly semismooth and – when
Zopt is a unique strictly complementary solution of the
semidefinite program – there is an ǫ > 0 such that

f̃(Zopt + ∆Z) + φ̃(Zopt + ∆Z) ≥ ǫ‖∆Z‖2

for all sufficiently small ‖∆Z‖ with Zopt + ∆Z ∈ A.

Note, if γ is some function in C2, then the second order
growth condition at some point x∗ implies that ∇2γ(x∗) ≻ 0.
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Second order growth condition
for semi-smooth functions

If γ is in C1, ∇γ is locally Lipschitz-continuous and strongly
semismooth at x∗, then even if γ satisifies the second order
growth condition at x∗, the generalized Hessian of γ at x∗

may contain singular elements or elements with negative
eigenvalues: Let γ : R

2 → R

γ(x, y) :=



















x2 if x ≥ 0, x ≥ |y|,

x2 + (y − x)2 if y > 0, y > |x|,

x2 + (y + x)2 if y < 0,−y > |x|,

3x2 + 2y2 if x < 0,−x ≥ |y|.
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Second order growth condition...

Here, ∇γ is Lipschitz-continuous (L = 4), ∇γ is strongly
semismooth, and γ(x, y) ≥ 1

4(x2 + y2).

Nevertheless,

(

2 0

0 0

)

∈ ∂2γ(x∗), x∗ = (0, 0).

Moreover, γ(x, y) − 1
8(x2 + y2) still satisfies the second order

growth condition at x∗, and we have

1

4

(

7 0

0 −1

)

∈ ∂2γ(x∗).
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How about φ̃ + f̃?

Let

C :=







1 0 0

0 1 0

0 0 1






, b̄ =







1

0

0






.

and

A(X) =







A(1) • X

A(2) • X

A(3) • X







with

A(1) =







1 0 0

0 0 0

0 0 0






, A(2) =







0 1 0

1 0 0

0 0 0






, A(3) =







0 0 1

0 0 0

1 0 0






.
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The unique and strictly complementary optimal solution is
given by

Xopt =







1 0 0

0 0 0

0 0 0






, Sopt =







0 0 0

0 1 0

0 0 1






.

Consider the pair

Xε =







1 0 0

0 ε 0

0 0 ε






, Sε =







−2ε 0 0

0 1 0

0 0 1






.

for ε > 0. Here, (Xε, Sε) ∈ A.
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For

H = (







0 0 0

0 1 0

0 0 −1






,







0 0 0

0 0 0

0 0 0






)

we have

(φ̃ + f̃)((Xε, Sε) + δH) ≡ 2ε2 ∀δ ∈ [−ε, ε].

Therefore, ∇2(φ̃ + f̃)(Xε, Sε)[H,H] = 0 for all ε > 0.
Moreover, Θ = limεց0 ∇

2(φ̃ + f̃)(Xε, Sε) exists.
Here, Θ[H,H] = 0 and, Θ ∈ ∂2(φ̃ + f̃)(Xopt, Sopt).

Θ is singular.
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Stronger second order growth condition (2010)

For the function

˜̂
f(X,S) := ‖XS‖2

F =
1

4

(

f̃(X,S) + ‖XS + SX‖2
F

)

the stronger result

∂2(φ̃ +
˜̂
f)(Xopt, Sopt) ≻ 0

holds true (under the same assumptions of uniqueness
and strict complementarity).

(In numerical experiments, the convergence results with
this function were best.)
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Consequence

We solve (P ) and (D) in two stages, the first one minimizing
φ̃ for Z̃ ∈ A, and when convergence of this stage is slow,

starting a second stage minimizing φ̃ +
˜̂
f for Z̃ ∈ A.

For both stages we may use a L-BFGS-method.

Note

The function φ̃ +
˜̂
f may (sometimes does!) have local

minimizers.
=⇒ Minimize φ̃ + α

˜̂
f for α > 0 and control α.
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Preliminary numerical results –

– for general SDP’s
http://www.math.uni-klu.ac.at/or/Software

L-BFGS
(Line search with only one extra function evaluation per
iteration.)
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LBFGS, General random SDPs

Examples with n ≥ 400 and m ≥ 30000 (50 iterations)

dim m sec lg(phi) lg(fhat) errP errD

400 30k 133.6 -5.896 -6.447 -6 -7

500 30k 172.4 -5.366 -6.133 -9 -21

600 40k 278.5 -5.334 -6.209 -7 -22

700 50k 418.9 -5.204 -6.132 -8 -25

800 70k 610.9 -5.294 -6.296 -7 -20

900 100k 857.1 -5.431 -6.490 -6 -15

1000 100k 1139.5 -5.168 -6.285 -8 -22

errP = λmin(Xit)
1+‖Xit‖F

· 105, errD = λmin(Sit)
1+‖Sit‖F

· 105
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BFGS vs. Nesterov’s method

The regularization term is chosen α = 15 for both methods.
(With a safeguard to prevent convergence to local
minimizer.)

Without regularization the Lipschitz constant can be chosen
L = 1 for Nesterov’s method. (L = 0.5 still works in our
experiments, but L = 0.495 leads to divergence.)

With regularization the Lipschitz constant
L := 1 + max{λmax(X), λmax(S)} seems overly pessimistic.

The line search in LBFGS eliminates the need for
estimating the Lipschitz constant – but it costs one extra
function evaluation per step.
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LBFGS vs. Nesterov’s method (continued)

10 Examples with n ≥ 400 and m ≥ 30000 (average values)

Method it sec errP errD

LBFGS 300 970 -0.11 -0.14

Nest (L=1) 300 583 -0.32 -0.42

Nest (L=2) 300 587 -1.15 -1.49

Nest (L=1) 480 1004 -0.20 -0.26

errP = λmin(Xit)
1+‖Xit‖F

· 105, errD = λmin(Sit)
1+‖Sit‖F

· 105

(Other experiments are quite similar.)
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Other Modifications

Use Newton-cg for φ̃ + α
˜̂
f in the final stage after LBFGS

with regularization turns slow as well.

Numerical results give some improvement – but not
conclusive.

High number of cg-iterations needed and even when cg
is run up to machine precision, the observed rate of
convergence of Newton’s method is not the expected
quadratic rate. (Rounding errors?)
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Discussion

The function φ̃ contains the normal equations.
Solving the normal equations by an iterative method
generally is a bad idea.

Here, the normal equations are “preconditioned” in
some form as we assume that the projection onto A is
carried out exactly, but still, the Hessian of φ̃ being
based on the sum of two projections may (and usually
does) have a poor condition number.

Use QMR on the AHO-System (plain primal-dual
system without centering).
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AHO-QMR

Use complementary starting point:
Set W := X − S and decompose W = UDUT ,
then UT XU and UTSU are nearly diagonal.
Project onto nearest complementary diagonal matrix
pair. In the transformed space, the complementarity
operators are diagonal.

Use further transformations to make AHO symmetric.
(Number of iterations and work per iteration!)

Use Cholesky factor of AA∗ as preconditioner.

AHO-QMR typically fails if started without Phase 1.
(Some interior-point approach would be needed.)
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LBFGS, AHO-QMR

Example with n = 400 and m = 30000

Method it sec lg(phi) lg(fhat)

LBFGS 100 195.6 -7.290 -7.729

LBFGS 500 935.3 -10.802 -10.904

LBFGS\QMR 100\6 867.7 -17.158 -16.628
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Summary

Simple concept minimizing squared distance to K within A.

Regularization and accelerations, such as L-BFGS or
truncated Newton-cg.

Phase 1 suitable for AHO-QMR.

Many applications that require low accuracy e.g. in
combinatorial optimization and completely positive
programming.

Implementation still (always!?) has room for improvement.
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