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Abstract. The success of interior-point methods to solve semidefinite optimization
problems (SDP) has spurred interest in SDP as a modeling tool in various mathemati-
cal fields, in particular in combinatorial optimization. SDP can be viewed as a matrix
relaxation of the underlying 0-1 optimization problem. In this survey, some of the main
techniques to get matrix relaxations of combinatorial optimization problems are pre-
sented. These are based either on semidefinite matrices, leading in general to tractable
relaxations, or on completely positive or copositive matrices. Copositive programs are
intractable, but they can be used to get exact formulations of many NP-hard combina-
torial optimization problems. It is the purpose of this survey to show the potential of
matrix relaxations.
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1. Introduction. Integer programming and nonlinear optimization
developed and grew rather independently of one another for a long time.
The theoretical basis of integer programming consisted essentially of poly-
hedral combinatorics and the algorithmic machinery for linear program-
ming, while nonlinear optimization relies on local analysis based on vector
calculus (Taylor expansion, steepest descent principle, etc). In the last 15
years these two fields mutually opened up, and today interior-point meth-
ods are a widely accepted tool in integer programming, while the modeling
power of 0-1 decision variables in an otherwise continuous setting expands
the flexibility of real-world modeling substantially.

In this article we explore the idea of matrix liftings joining integer
and nonlinear optimization. We first introduce the 0-1 formulation of an
abstract combinatorial optimization problem (COP), given as follows. Let
E be a finite set and let F be a (finite) family of subsets of E. The
elements F ∈ F represent the feasible solutions of (COP). Each e ∈ E
has a given integer cost ce. We define the cost c(F ) of F ∈ F to be
c(F ) :=

∑

e∈F ce. The problem (COP) now consists in finding a feasible
solution F of minimum cost:

(COP ) z∗ = min{c(F ) : F ∈ F}.

The 0-1 model of (COP) is obtained by assigning to each F ∈ F a charac-
teristic vector xF ∈ {0, 1}|E| with (xF )e = 1 if and only if e ∈ F . We can
write (COP) as a linear program as follows. Let

P := conv{xF : F ∈ F}
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denote the convex hull of the characteristic vectors of feasible solutions.
Then it is clear that

z∗ = min{cT xF : F ∈ F} = min{cT x : x ∈ P}.

The first minimization is over the finite set F , the second one is a linear
program. This is the basic principle underlying the polyhedral approach to
solve combinatorial optimization problems. The practical difficulty lies in
the fact that in general the polyhedron P is not easily available. We recall
two classical examples to illustrate this point.

As a nice example, we consider first the linear assignment problem.
For a given n× n matrix C = (cij), it consists of finding a permutation φ
of N = {1, . . . , n}, such that

∑

i∈N ciφ(i) is minimized. The set of all such
permutations is denoted by Π. In our general setting, we define the ground
set to be E = N×N , the set of all ordered pairs (i, j). Feasible solutions are
now given through permutations φ as Fφ ⊂ E such that Fφ = {(i, φ(i)) :
i ∈ N}. In this case the characteristic vector of Fφ is the permutation
matrix Xφ given by (Xφ)ij = 1 if and only if j = φ(i). Birkhoff’s theorem
tells us that the convex hull of the set of permutation matrices Π is the set
of doubly stochastic matrices Ω = {X : Xe = XT e = e, X ≥ 0} 1.

Theorem 1.1. conv{Xφ : φ ∈ Π} = Ω.
Hence we have a simple polyhedral description of P in this case. There-

fore

min

{

∑

i

ciφ(i) : φ ∈ Π} = min{〈C,X〉 : X ∈ Ω

}

,

and the linear assignment problem can be solved as an ordinary linear
program.

Unfortunately the set P does not always have such a nice description.
As a second example we consider the stable set problem. Given a graph
G = (V,E) with vertex set V = {1, . . . , n}, the problem is to find S ⊆ V ,
such that no edge joins vertices in S (such sets S are called stable), and
|S| is maximized. The ground set here is V and F consists of all subsets
of V which are stable. The characteristic vectors x ∈ R

n of the stable sets
can be characterized by x = (xi) with xi ∈ {0, 1} and

xi + xj ≤ 1 ∀ij ∈ E(G),(1.1)

because no stable set can contain both i and j if ij ∈ E(G). A partial
description of the convex hull of the characteristic vectors of stable sets is
therefore given by

FSTAB(G) := {x ∈ R
n : x ≥ 0, xi + xj ≤ 1 ∀ij ∈ E(G)},(1.2)

1For notation we refer to the end of this section.
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leading to the following linear programming relaxation

max{eT x : x ∈ FSTAB(G)}.

If we take G to be the 5-cycle C5, we see that x = 1
2e is feasible for

FSTAB(C5) with value 5
2 , showing that this is indeed only a relaxation of

the stable set problem.
The use of a computationally tractable partial description of P by

linear inequalities in combination with systematic enumeration, like Branch
and Bound, has led to quite successful solution methods for a variety of
combinatorial optimization problems like the traveling salesman problem
(TSP), see for instance [40]. It turned out however, that for some prominent
NP-hard problems like Stable-Set or Max-Cut, this polyhedral approach
was not as successful as one might have hoped in view of the results for
TSP. It is the purpose of this article to describe matrix based relaxations,
which generalize the purely polyhedral methods, and have the potential for
stronger approximations of the original problem.

We conclude the introduction with a summary of the notation used
throughout.

Vectors and matrices: e denotes the vector of all ones of appropriate
dimension and J = eeT is the all ones matrix. I = (e1, . . . , en) denotes the
n × n identity matrix, so the e′is represent the standard unit vectors. We
also use (δij) := I, thereby defining the Kronecker delta δij . The sum of
the main diagonal entries of a square matrix A is called the trace, tr(A) =
∑

i aii. The inner product in R
n as well as in the space of n× n matrices

is represented by 〈., .〉. Hence 〈a, b〉 = aT b, for a, b ∈ R
n and 〈A,B〉 =

tr(AT B) for matrices A,B. The Kronecker product of two matrices P,Q
is the matrix consisting of all possible products of elements from P and
Q, P ⊗ Q = (pijQ). For m ∈ R

n we define Diag(m) to be the diagonal
matrix having m on the main diagonal. diag(M) is the vector, containing
the main diagonal elements from M . If X = (x1, . . . , xn) is a matrix with

columns xi, then vec(X) =







x1

...
xn






is the vector, obtained by stacking

the columns of X.
Sets and matrix cones: The standard simplex in R

n is given by
∆ = {x ∈ R

n : eT x = 1, x ≥ 0}. In this survey, we will put special
emphasis on the following matrix cones.

N := {X : X ≥ 0} elementwise nonnegative matrices,

S+ := {X : X = XT , aT Xa ≥ 0 ∀a}, positive semidefinite matrices,

C := {X : X = XT , aT Xa ≥ 0 ∀a ≥ 0}, copositive matrices.
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We also use the notation X � 0 to express X ∈ S+. If K is a cone
in some finite dimensional vector space R

d, then by definition the dual
cone, denoted K∗, contains all elements from R

d having nonnegative inner
product with all elements from K,

K∗ := {y ∈ R
d : 〈x, y〉 ≥ 0 ∀x ∈ K}.

It is well known and can easily be shown, that both N and S+ are self-dual.
The dual cone of C is the cone

C∗ = conv{aaT : a ≥ 0} = {Y : ∃X ≥ 0, Y = XXT }

of completely positive matrices. Membership in S+ can be checked in
polynomial time, for instance through the existence (or non-existence) of
the Cholesky decomposition. In contrast, it is NP-complete to decide if a
matrix does not belong to C, see [49]. Wile positive semidefinite matrices
are covered in any reasonable text book on advanced linear algebra, we refer
the reader to [4] for a thorough treatment of completely positive matrices
and to [33] for a recent survey on copositive matrices.

Graphs: A graph G = (V,E) is given through the set of vertices V and
the set of edges E. We sometimes write E(G) to indicate the dependence
on G. If S ⊂ V , we denote by δ(S) := {uv ∈ E : u ∈ S, v /∈ S} the set of
edges joining S and V \ S. We also say that the edges in δ(S) are cut by
S.

2. Matrix relaxations: basic ideas. The classical polyhedral ap-
proach is formulated as a relaxation in R

n, the natural space to embed F .
Here n denotes the cardinality of E, |E| = n. Matrix-based relaxations of
(COP) are easiest explained as follows. To an element xF ∈ F we associate
the matrix xF xT

F and consider

M := conv{xF xT
F : F ∈ F},(2.1)

see for instance [44, 61, 62]. Note that

diag(xF xT
F ) = xF ,

because xF ∈ {0, 1}n. This property immediately shows that the original
linear relaxation, obtained through a partial description of P can also be
modeled in this setting. The full power of matrix lifting is based on the
possibility to constrain M to matrix cones other than polyhedral ones.
Moreover, quadratic constraints on xF will turn into linear constraints on
matrices in M.

If K is some matrix cone and matrices C,A1, . . . , Am and b ∈ R
m are

given, the problem

inf{〈C,X〉 : 〈Ai,X〉 = bi i = 1, . . . ,m, X ∈ K}(2.2)
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is called a linear program over K. Linear programs over S+ are also called
semidefinite programs (SDP) and those over C or C∗ are called copositive
programs (CP) for short. In this paper we will mostly concentrate on SDP
and CP relaxations of combinatorial optimization problems.

The duality theory of linear programming generalizes easily to conic
linear programs. The (Lagrangian) dual associated to (2.2) is given as

sup{bT y : C −
∑

i

yiAi ∈ K∗}.(2.3)

Weak duality (sup ≤ inf) holds by construction of the dual. Strong du-
ality (sup = inf), as well as attainment of the respective optima requires
some sort of regularity of the feasible regions. We refer to Duffin [17] for
the original paper, and to the handbook [70] on semidefinite programming
for a detailed discusssion of SDP. The existence of feasible points in the
interior of the primal and dual cone insures the following characterization
of optimality. For ease of notation we write A(X) = b for the equations
in (2.2). The linear operator A has an adjoint AT , defined through the
adjoint identity

〈A(X), y〉 = 〈X,AT (y)〉.

We should point out that the inner product on the left is in R
m and on the

right it is in the space of n× n matrices. In this paper the inner products
will always be canonical, so we do not bother to overload the notation to
distinguish them. The adjoint can be expressed as AT (y) =

∑

i yiAi.
Theorem 2.1. [17, 70] Suppose there exists X0 ∈ int(K) such that

A(X0) = b and there is y0 such that C − AT (y0) ∈ int(K∗). Then the
optima in (2.2) and (2.3) are attained. Moreover, X and y are optimal if
and only if A(X) = b, X ∈ K, Z := C − AT (y) ∈ K∗ and the optimal
objective values coincide, 〈X,Z〉 = 0.

Matrix relaxations can be used in several ways to better understand
(COP). The seminal work of Goemans and Williamson [23] opened the way
to new approximation techniques for some COPs. We will briefly explain
them as we develop the various relaxations. From a computational point of
view, SDP based relaxations pose a serious challenge to existing algorithms
for SDP. We will describe the currently most efficient ways to solve these
relaxations (at least approximately).

There exist several recent survey papers devoted to the connection be-
tween semidefinite optimization and integer programming. The interested
reader is referred to [39] for an extensive summary on the topic covering
the development until 2003. The surveys by Lovász [43], Goemans [22] and
Helmberg [29] all focus on the same topic, but also reflect the scientific
interests and preferences of the respective authors. The present paper is
no exception to this principle. The material selected, and also omitted,
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reflects the author’s subjective view on the subject. It is a continuation
and an extension of [57].

We are now going to look at several techniques to obtain matrix re-
laxations of combinatorial optimization problems. We start out with the
generic idea, as explained in the introduction, and show how it works for
graph partitioning.

3. Graph partition. Graph partition problems come in various for-
mulations. The starting point is a graph G, given through its weighted
n× n adjcacency matrix AG, or simply A. If ij ∈ E(G), then aij denotes
the weight of edge ij, otherwise aij = 0. Hence, A = AT and diag(A) = 0.
The Laplacian LA of A, or L for short, is defined to be the matrix

L := diag(Ae)−A.(3.1)

The following simple properties of the Laplacian L will be used later on.

Proposition 3.1. The Laplacian L of the matrix A satisfies Le = 0
and A ≥ 0 implies that L � 0.

Graph partition problems ask to separate the vertices of a graph into a
specified number of partition blocks so that the total weight of edges joining
different blocks is minimized or maximized. Partition problems lead rather
naturally to matrix based relaxations because encoding whether or not
vertices i and j ∈ V are separated has a natural matrix representation,
as we will see briefly. We recall the definition of a cut given by S ⊂ V :
δ(S) = {uv ∈ E(G) : u ∈ S, v /∈ S}.

3.1. Max-k-Cut. For k ≥ 2, Max-k-Cut asks to partition V (G) into
k subsets (S1, . . . , Sk) such that the total weight of edges joining distinct
subsets is maximized. We introduce characteristic vectors si ∈ {0, 1}n for
each Si. The n×k matrix S = (s1, . . . , sk) is called the k-partition matrix.
Since ∪iSi = V , we have

k
∑

i=1

si = Se = e.

Partition matrices have the following properties.

Proposition 3.2. Let S = (s1, . . . , sk) be a k-partition matrix. Then
diag(SST ) = e, kSST − J � 0.

We prove a more general result, which will also be of use later on. Its
proof has been pointed out by M. Laurent2, see also [18], Lemma 2.

Lemma 3.1. Let s1, . . . , sk be a set of 0, 1 vectors and λi ≥ 0 be such
that

∑k
i=1 λisi = e, hence

∑

i λi = t > 0. Let M =
∑

i λisis
T
i . Then

diag(M) = e, tM − J � 0.

2Oberwolfach conference on Discrete Optimization, November 2008
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Proof. Consider

∑

i

λi

(

1
si

)(

1
si

)T

=

(

t eT

e M

)

� 0.

We note that diag(M) =
∑

i λidiag(sis
T
i ) =

∑

i λisi = e. The Schur-
complement lemma shows that M − 1

t ee
T � 0.

Proposition 3.2 clearly follows with λi = 1. We recall that δ(Si) de-
notes the set of edges joining Si to V \Si. A simple calculation using basic
properties of the Laplacian L shows that

sT
i Lsi =

∑

uv∈δ(Si)

auv(3.2)

gives the weight of all edges cut by Si. Therefore the total weight of all
edges joining distinct subsets is given by

1

2

∑

i

sT
i Lsi =

1

2
〈S,LS〉.

The factor 1
2 comes from the fact that an edge uv ∈ E(G) with u ∈ Si and

v ∈ Sj appears in both δ(Si) and δ(Sj). Thus Max-k-Cut can be modeled
as

max
1

2
〈S,LS〉

such that the n×k matrix S has entries 0 or 1 and Se = e. After replacing
SST by Y , we get the following SDP relaxation.

zGP−k := max{1
2
〈L, Y 〉 : diag(Y ) = e, kY − J ∈ S+, Y ∈ N}(3.3)

The conditions diag(Y ) = e and kY −J ∈ S+ are derived from proposition
3.2. Note in particular that Y � 0 is implied by kY � J � 0. The
standard SDP formulation, see [19, 16], is obtained through the variable
transformation

X =
1

k − 1
[kY − J ]

and yields, with 〈J, L〉 = 0

max{k − 1

2k
〈L,X〉 : diag(X) = e, X ∈ S+, xij ≥ −

1

k − 1
}.(3.4)
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3.2. Max-Cut. The special case of Max-k-Cut with k = 2 is usually
simply called Max-Cut, as the task is to separate V into S and V \S so as
to maximize the weight of edges in δ(S). In view of (3.2) we clearly have

zMC = max{sT Ls : s ∈ {0, 1}n}.

Setting y = e− 2s, we have y ∈ {1,−1}n and, using Le = 0, we get

zMC = max{1
4
yT Ly : y ∈ {−1, 1}n}.(3.5)

The following identity is a simple consequence of the definition of the Lapla-
cian L through the adjacency matrix A, see (3.1)

1

4
yT Ly =

∑

ij∈E(G)

aij
1− yiyj

2
.(3.6)

The resulting SDP relaxation becomes

max{1
4
〈L,X〉 : diag(X) = e, X ∈ S+}.(3.7)

This model is identical to (3.4) with k = 2. We point out in particular that
the sign constraint xij ≥ −1 is implied by X � 0 and diag(X) = e, and
hence redundant.

3.3. k-Equicut. The following version of graph partition constrains
the cardinalities of the partition blocks. In the simplest version of k-Equicut
they are required to be equal to one another, |Si| = n

k ∀i. Thus the column
sums of S are n

k , ST e = n
k e. We also have Se = e, because each vertex is

in exactly one partition block. From this it follows that SST e = n
k e, so n

k
is the eigenvalue of SST for the eigenvector e. The relaxation from (3.3)
therefore leads to

min{1
2
〈L,X〉 : diag(X) = e, Xe =

n

k
e, X ≥ 0, X � 0}.

In the context of Equicut, one is often interested in minimizing the total
weight of edges cut. It is well known that without the cardinality con-
straints on the partition blocks, one can find the minimum cut (in the
bisection case k = 2) using maximum flows. We also note that X � 0 to-
gether with Xe = n

k e implies X = 1
kJ +

∑

i λiuiu
T
i where the eigenvalues

λi ≥ 0 and the eigenvectors ui ⊥ e. Therefore kX − J � 0 as in (3.3) is
implied. Further modeling ideas for Equicut using SDP can be found for
instance in [36]. Applications of Equicut in telecommunication, and some
computational experience with k-Equicut are shown in [41].
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3.4. Approximation results for graph partition. The SDP re-
laxations for Max-Cut and Max-k-Cut can be used to get the following
polynomial time approximations. The key idea underlying this approach
was introduced by Goemans and Williamson [23] and consists of the fol-
lowing geometric construction. A feasible solution X of (3.4) or (3.7) has
the Gram representation X = (xij) with xij = (vT

i vj). The constraint
diag(X) = e implies that the vi are unit vectors.

Let us first consider Max-Cut. Goemans and Williamson [23] interpret
the Max-Cut problem as finding an embedding vi of the vertices i in the
unit sphere in R

1, hence vi ∈ {−1, 1}, such that 1
4

∑

ij lijv
T
i vj is maximized,

see (3.5).
The optimal solution of the relaxation (3.7) gives such an embedding

in R
d, where d is the rank of an optimal X. Clearly 1 ≤ d ≤ n. How should

we get a (bi)partition of approximately maximum weight? Goemans and
Williamson propose the following simple but powerful hyperplane rounding
trick.

Take a random hyperplane H through the origin, and let S ⊆ V be
the set of vertices on one side of H. The probability that H separates i
and j is proportional to the angle between vi and vj and is given by

1

π
arccos(vT

i vj).

In [23] it is shown that

1

π
arccos t ≥ α

1

2
(1− t)

holds for −1 ≤ t ≤ 1 and α ≈ 0.87856. We therefore get the following
performance bound for the expected value of the cut y obtained this way,
provided aij ≥ 0.

∑

ij∈E(G)

aij
1− yiyj

2
≥ α

∑

ij

aij
1

2
(1− vT

i vj) ≈ 0.87856zMC

Note the use of (3.6). Later on, Nesterov [51] generalizes this result to
the more general case where only L � 0 is assumed. The analysis in this
case shows that the expected value of the cut y obtained from hyperplane
rounding is at least

1

4
yT Ly ≥ 2

π
zMC ≈ 0.636zMC .

Frieze and Jerrum [19] generalize the hyperplane rounding idea to Max-
k-Cut. Starting again from the Gram representation X = V T V with
unit vectors vi forming V , we now take k independent random vectors
r1, . . . , rk ∈ R

n for rounding. The idea is that partition block Sh contains
those vertices i which have vi most parallel to rh,

i ∈ Sh ⇐⇒ vT
i rh = max{vT

i rl : 1 ≤ l ≤ k}.



10 FRANZ RENDL

Ties are broken arbitrarily. For the computation of the probability that
two vertices are in the same partition block, it is useful to assume that
the entries of the ri are drawn independently from the standard normal
distribution.

Pr(vs, vt ∈ S1) = Pr(vT
s r1 = max

i
vT

s ri, vT
t r1 = max

i
vT

t ri).

The symmetry properties of the normal distribution imply that this prob-
ability depends on ρ = cos(vT

s vt) only. We denote the resulting probability
by I(ρ). Therefore

Pr(vs and vt not separated) = kI(ρ).

The computation of I(ρ) involves multiple integrals. A Taylor series ex-
pansion is used in [19] to get the following estimates for the expectation
value of the cut given by the partition S from hyperplane rounding,

1

2
〈S,LS〉 ≥ αkzGP−k,

where α2 = 0.87856 as for Max-Cut, α3 ≈ 0.8327, α4 ≈ 0.85. In [19], values
for αk are also provided for larger values of k. Later, these bounds on αk

were slightly improved, see [16]. It should be emphasized that the math-
ematical analysis underlying this simple rounding scheme involves rather
subtle techniques from classical calculus to deal with probability estimates
leading to the final error bounds αk, see also the monograph [14].

4. Stable sets, cliques and coloring. The seminal work of Lovász
[42] introduces a semidefinite program, which can be interpreted both as a
relaxation of the Max-Clique problem and the Coloring problem.

4.1. Stable sets and Cliques. The Stable-Set problem has already
been described in the introduction. We denote by α(G) the stability num-
ber of G (= cardinality of the largest stable set in G). It is given as the
optimal solution of the following integer program.

α(G) = max{eT x : x ∈ {0, 1}n, xi + xj ≤ 1 ∀ij ∈ E(G)}.

We first observe that the inequalities could equivalently be replaced by

xixj = 0 ∀ij ∈ E(G).

A clique in G is a subset of pairwise adjacent vertices. Moving from G to
the complement graph G, which joins vertices i 6= j whenever ij /∈ E(G),
it is immediately clear that stable sets in G are cliques in G and vice-versa.

In the spirit of matrix lifting, we introduce for a nonzero characteristic
vector x of some stable set the matrix

X :=
1

xT x
xxT .(4.1)
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These matrices satisfy

X � 0, tr(X) = 1, xij = 0 ∀ij ∈ E(G).

We also have 〈J,X〉 = (eT x)2

xT x
= eT x. We collect the equations xij =

0 ∀ij ∈ E(G) in the operator equation AG(X) = 0. Therefore we get the
semidefinite programming upper bound α(G) ≤ ϑ(G),

ϑ(G) := max{〈J,X〉 : tr(X) = 1, AG(X) = 0, X � 0}.(4.2)

This is in fact one of the first relaxations for a combinatorial optimization
problem based on SDP. It was introduced by Lovász [42] in 1979. This
problem has been the starting point for many quite far reaching theoretical
investigations. It is beyond the scope of this paper to explain them in
detail, but here are some key results.

Grötschel, Lovász and Schrijver [25] show that α(G) can be computed
in polynomial time for perfect graphs. This is essentially a consequence
of the tractability to compute ϑ(G), and the fact that α(G) = ϑ(G) holds
for perfect graphs G. We do not explain the concept of perfect graphs here,
but refer for instance to [25, 60]. It is however a prominent open problem to
provide a polynomial time algorithm to compute α(G) for perfect graphs,
which is purely combinatorial (=not making use of ϑ(G)).

The Stable-Set problem provides a good example for approximations
based on other matrix relaxations. Looking at (4.1), we can additionally
ask that X ∈ N . In this case the individual equations xij = 0 ∀ij ∈ E(G)
can be added into a single equation

∑

ij∈E(G) xij = 0. If we use AG for the
adjacency matrix of G, this means

〈AG,X〉 = 0.

Hence we get the stronger relaxation, proposed independently by Schrijver
[59] and McEliece et al [47].

α(G) ≤ max{〈J,X〉 : 〈AG,X〉 = 0, tr(X) = 1, X ∈ S+ ∩N} =: ϑ′(G).

In terms of matrix cones, we have moved from S+ to S+ ∩ N . We can go
one step further. The matrix X from (4.1) is in fact completely positive,
hence we also get

α(G) ≤ max{〈J,X〉 : 〈AG,X〉 = 0, tr(X) = 1, X ∈ C∗}.(4.3)

We will see shortly that the optimal value of the copositive program on the
right hand side is in fact equal to α(G). This result is implicitly contained
in Bomze et al [8] and was stated explicitly by de Klerk and Pasechnik
[15]. A simple derivation can be obtained from the following theorem of
Motzkin and Straus [48]. We recall that ∆ := {x ∈ R

n : x ≥ 0, eT x = 1}.
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Theorem 4.1. [48] Let AG be the adjacency matrix of a graph G.
Then

1

α(G)
= min{xT (AG + I)x : x ∈ ∆}.(4.4)

The relation (4.4) implies in particular that

0 = min{xT (AG+I− 1

α
eeT )x : x ∈ ∆} = min{xT (AG+I− 1

α
J)x : x ≥ 0}.

This clearly qualifies the matrix α(AG + I)−J to be copositive. Therefore

inf{λ : λ(AG + I)− J ∈ C} ≤ α(G).

But weak duality for conic linear programs also shows that

sup{〈J,X〉 : 〈AG + I,X〉 = 1, X ∈ C∗} ≤ inf{λ : λ(AG + I)− J ∈ C}.

Finally, any matrix X of the form (4.1) is feasible for the sup-problem,
hence

α(G) ≤ sup{〈J,X〉 : 〈AG + I,X〉 = 1, X ∈ C∗}.

Combining the last 3 inequalities, we see that equality must hold through-
out, the infimum is attained at λ = α(G) and the supremum is attained
at (4.1) with x being a characteristic vector of a stable set of size α(G).
Hence we have shown the following result.

Theorem 4.2. [15] Let G be a graph. Then

α(G) = max{〈J,X〉 : 〈AG + I,X〉 = 1, X ∈ C∗}.

This shows on one hand that copositive programs are intractable. It
also shows however, that models based on CP may be substantially stronger
than SDP based models. We will see more of this in some of the subsequent
sections.

4.2. Coloring. Partitioning the vertex set V of a graph into stable
sets is pictorially also called vertex coloring. Each partition block Si re-
ceives a distinct ’color’, and vertices having the same color are non-adjacent,
because Si is stable. We could for instance partition into singletons, so
each vertex would get a distinct color. The chromatic number χ(G) is
the smallest number k such that G has a k-partition into stable partition
blocks.

If we let {S1, . . .} denote the set of all stable sets of G, then the fol-
lowing integer program determines χ(G),

χ(G) = min{
∑

i

λi :
∑

i

λixi = e, λi ∈ {0, 1}}.
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xi denotes the characteristic vector of the stable set Si. It should be
observed that the number of variables λi is in general not polynomially
bounded in |V (G)|. The fractional chromatic number χf (G) is ob-
tained by allowing λi ≥ 0,

χf (G) = min{
∑

i

λi :
∑

i

λixi = e, λi ≥ 0}.(4.5)

This is now a linear program with a possibly exponential number of vari-
ables. Computing χf (G) is known to be NP-hard, see for instance [60].

A semidefinite programming based lower bound on χf (G) can be ob-
tained as follows, see Lovász [42] and Schrijver [60]. Let λi ≥ 0 be an
optimal solution of (4.5), so χf (G) =

∑

i λi. Since
∑

i λixi = e, we can
apply Lemma 3.1. The matrix

M =
∑

i

λixix
T
i(4.6)

therefore satisfies

χf (G)M − J ∈ S+, diag(M) = e.

Moreover, since each xi is characteristic vector of a stable set in G, we also
have muv = 0 uv ∈ E(G), or AG(M) = 0. Therefore the optimal value of
the following SDP is a lower bound on χf (G),

χf (G) ≥ min{t : diag(M) = e, AG(M) = 0, tM − J � 0}.(4.7)

Strictly speaking, this is not a linear SDP, because both t and M are vari-
ables, but it can easily be linearized by introducing a new matrix variable
Y for tM and asking that diag(Y ) = te. The resulting problem is the dual
of

max{〈J,X〉 : 〈I,X〉 = 1, xij = 0 ij /∈ E(G), X � 0},

which is equal to ϑ(G). Thus we have shown the Lovász ’sandwich theo-
rem’. In [42], the weaker upper bound χ(G) is shown for ϑ(G), but it is
quite clear that the argument goes through also with χf (G).

Theorem 4.3. [42] Let G be a graph. Then α(G) ≤ ϑ(G) ≤ χf (G).

Let us now imitate the steps leading from ϑ(G) to the copositive
strengthening of the stability number from the previous section. The cru-
cial observation is that M from (4.6) and therefore tM ∈ C∗.

This leads to the following conic problem, involving matrices both in
S+ and C∗.

t∗ := min{t : diag(M) = e, AG(M) = 0, tM − J ∈ S+, M ∈ C∗}.
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Using again Lemma 3.1 we see that M from (4.6) is feasible for this problem,
therefore

t∗ ≤ χf (G).

In [18] it is in fact shown that equality holds.
Theorem 4.4. [18] The optimal value t∗ of the above SDP-CP relax-

ation of the chromatic number is equal to χf (G).
This shows again the strength of modeling with copositive programs.

New relaxations of the chromatic number based on graph products have
very recently been introduced in [26, 27, 28]. It is beyond the scope of this
introductory survey to elaborate on this approach.

4.3. Approximation results for Coloring. Similar to Max-k-Cut
we can use the SDP relaxations of coloring to derive a vertex partition
using hyperplane rounding. An additional complication comes from the
fact that the partition blocks have to be stable sets. The first ground-
breaking results were obtained by Karger et al [35]. We briefly explain
some of the ideas for the case of graphs G having χ(G) = 3. This may
seem artificial, but simply knowing that χ(G) = 3 does not help much. In
fact, finding a 4-coloring in a 3-colorable graph is NP-hard, see [37].

Widgerson [68] observes that if the largest degree dmax of a graph on
n vertices is large, dmax >

√
n, then 2 colors suffice to color the neighbour-

hood of the vertex with largest degree, thereby legally coloring at least
√

n
vertices. If dmax ≤

√
n, then the graph can be colored with

√
n + 1 colors.

This yields a simple algorithm that colors any three-colorable graph with
at most 3

√
n colors, see [68].

In [35], the SDP underlying ϑ(G) is used for hyperplane rounding. The
key observation is that a carefully chosen rounding procedure can be used to
produce with high probability a stable set of size Õ( n

d
1/3

max

). The Õ notation

ignores polylogarithmic terms. This leads to a coloring with Õ(n1/4) colors.
Based on this approach, Blum and Karger [6] refine the analysis and end
up with colorings using Õ(n3/14) colors. Note that 3/14 ≈ 0.2143. Very
recently, these results were further improved by Arora et al [2] to at most
Õ(n0.2111) colors. The derivation of these estimates is rather complex. We
refer to the recent dissertation [13] for a detailed discussion of hyperplane
rounding for coloring.

5. Bandwidth of graphs. The minimum bandwidth problem of
a graph G can be interpreted as a reordering problem of the vertices of G
such that the nonzero entries of the adjacency matrix (after reordering) are
collected within a band of small width around the main diagonal. Formally
we denote the vertices of G again by V = {1, . . . , n}. For a permutation
φ ∈ Π, the bandwidth bw(φ) of φ is defined as

bw(φ) := max{|φ(i)− φ(j)| : ij ∈ E(G)}.
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The bandwidth of G is the smallest of these values over all bijections φ :
V 7→ V .

bw(G) := min{bw(φ) : φ ∈ Π}.(5.1)

Determining bw(G) is in general NP-hard, see [52]. It remains NP-hard,
even if G is restricted to be a tree with maximum degree 3, see [45].

The bandwidth problem has many applications. Consider for instance
a sparse symmetric system of linear equations. Having an ordering of the
system matrix with small bandwidth may result in a substantial computa-
tional speedup, when actually solving the system.

In the following approximation approach, Blum et al [7] formulate
the bandwidth problem as an ordering of V on n equidistant points on a
quarter-circle of radius n. Let

Pj := n(cos
jπ

2n
, sin

jπ

2n
), j = 1, . . . , n

denote these points. The problem

min{b : ∃φ ∈ Π such that vi = Pφ(i), ‖vi − vj‖ ≤ b ∀ij ∈ E(G)}

is clearly equivalent to finding bw(G). Blum et al relax the difficult part of
bijectively mapping V to {P1, . . . , Pn}. Let us define the constraints

‖vi‖ = n ∀i ∈ V, ‖vi − vj‖ ≤ b ∀ij ∈ E.(5.2)

Simply solving

min{b : vi satisfy (5.2)}

could be done using SDP by introducing X = V T V � 0. The constraints
(5.2) translate into

xii = n2 ∀i, xii + xjj − 2xij ≤ β ∀ij ∈ E(5.3)

and minimizing β would yield b =
√

β. Unfortunately, the optimum of this
SDP has value β = 0, by assigning each i to the same point, say P1. To
force some spreading of the vi, we observe the following.

Proposition 5.1. Let i ∈ V and S ⊆ V \ i. Then

∑

j∈S

(i− j)2 ≥ |S|
6

(|S|+ 1)(
|S|
2

+ 1) =: f(|S|).

Since ‖Pi − Pj‖ ≥ |i − j|, we can include these additional spread
constraints

∑

j∈S

‖vi − vj‖2 ≥ f(|S|) ∀S ⊆ V, i ∈ V(5.4)
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into the SDP. Blum et al [7] consider the following strenghtened problem,
which is equivalent to an SDP, once we make the change of variables X =
V T V .

min{b : (vi) satisfy (5.2), (5.4)}.(5.5)

Even though there is an exponential number of these spread constraints, it
can easily be argued that their separation can be done in polynomial time
by sorting, for i fixed, the remaining vertices j ∈ V \ i in increasing order
of ‖vi − vj‖2.

Having an optimal solution b, v1, . . . , vn of the SDP, Blum et al apply
the hyperplane rounding idea as follows. Take a random line through the
origin and project the vi onto this line. The resulting permutation of the
vertices is shown to satisfy the following estimate.

Theorem 5.1. [7] Let G be a graph and b, v1, . . . , vn denote the opti-
mal solution of (5.5). The ordering φ produced by projecting the vi onto a
random line through the origin satisfies

bw(φ) ≤ O(
√

n/b log(n))bw(G).

with high probability.
The proof of this result is rather long and technical and is omitted

here.

We are now going to describe another modeling approach which can
be used to bound bw(G). Let G be a connected graph, given through
its adjacency matrix A ≥ 0. We now consider 3-partitions (S1, S2, S3)
of V having prescribed cardinalities |Si| = mi. Let us denote the edges

joining S1 and S2 by δ(S1, S2). If we set B =





0 1 0
1 0 0
0 0 0



 and use the

characteristic vectors si for Si, we get the total weight of edges in δ(S1, S2)
by

sT
1 As2 =

1

2
〈S,ASB〉.

Minimizing this cost function over 3-partitions of prescribed cardinalities
m = (m1,m2,m3) may look artificial, but we will see that it provides a
handle to several graph optimization problems, in particular the bandwidth
problem. So let us consider

z3gp := min{1
2
〈S,ASB〉 : Se = e, ST e = m,S ≥ 0, ST S = M}.(5.6)

We set M = Diag(m). This is a nonconvex quadratic optimization prob-
lem, hence intractable. We leave it to the reader to verify that feasible
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matrices S of this problem are integer. We can use this problem as fol-
lows. If z3gp = 0 then the graph underlying A has a vertex separator

of size m3. (We recall that S ⊂ V is a vertex separator, if the removal of
S disconnects the graph.) If z3gp > 0 then the bandwidth of A is at least
m3 + 1, see Helmberg et al [31]. This last condition could also be used if
we would have a positive lower bound on z3gp. In [31], such a lower bound
was derived using eigenvalue techniques on the basis that the columns of
S are pairwise orthogonal. Povh and Rendl [54] consider the matrix lifting

M3gp := conv{ssT : s = vec(S), S is 3-partition with |Si| = mi}.(5.7)

It turns out that M3gp can be represented as the intersection of a set of
linear equations with the cone C∗ of completely positive matrices. To see
how these equations are derived, we start out with the quadratic equation
ST S = M . At this point the Kronecker product of two matrices P and Q,
given by P ⊗Q := (pijQ), is extremely useful. If P,Q and S have suitable
size, and s = vec(S), the following identity is easy to verify.

〈S, PSQ〉 = 〈QT ⊗ P, ssT 〉.(5.8)

Using it, we see that (ST S)ij = eT
i ST Sej = 〈eje

T
i ⊗I, ssT 〉. The symmetry

of ssT allows us to replace eje
T
i by Bij := 1

2 (eje
T
i + eie

T
j ). Therefore

(ST S)ij = Mij becomes

〈Bij ⊗ I, Y 〉 = Mij(5.9)

where Y ∈M3gp. In a similar way we get

〈J3 ⊗ eie
T
i , Y 〉 = 1, 1 ≤ i ≤ n,(5.10)

by squaring the n equations Se = e. Pairwise multiplication of the con-
straints ST e = m gives

〈Bij ⊗ Jn, Y 〉 = mimj 1 ≤ i ≤ j ≤ 3.(5.11)

Finally, elementwise multiplication of Se = e with ST e = m gives

〈eie
T ⊗ eeT

j , Y 〉 = mi 1 ≤ i ≤ 3, 1 ≤ j ≤ n.(5.12)

The following result is shown in [54].
Theorem 5.2.

M3gp = {Y : Y ∈ C∗, Y satisfies (5.9), (5.10), (5.11), (5.12)}.

Therefore z3gp could be determined as the optimal solution of the (in-
tractable) copositive program

z3gp = min{1
2
〈B⊗A, Y 〉 : Y ∈ C∗, Y satisfies (5.9), (5.10), (5.11), (5.12)}.
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We get a tractable relaxation by asking Y ∈ S+ instead of Y ∈ C∗. Further
details can be found in [54] and in the dissertation [53]. While the model
investigated by [7] is based on n × n matrices, it has to be emphasized
that the last model uses 3n × 3n matrices, and hence is computationally
significantly more demanding.

6. Quadratic assignments. The quadratic assignment problem, or
QAP for short, is a generalization of the (linear) assignment problem,
briefly described in the introduction. It consists of minimizing a quadratic
function over the set of permutation matrices {Xφ : φ ∈ Π}. The general
form of QAP, for given symmetric n2 × n2 matrix Q is as follows

zQAP := min{xT
φ Qxφ : xφ = vec(Xφ), φ ∈ Π}.

In applications, Q is often of the form Q = B ⊗ A, where A and B are
symmetric n× n matrices. In this case the objective function has a repre-
sentation in terms of n× n matrices, see (5.8)

xT
φ (B ⊗A)xφ = 〈Xφ, AXφB〉.

We refer to the recent monograph [12] by Burkard et al for further details
on assignment problems.

To get a handle on QAP, we consider the matrix lifting

MQAP := conv{xφxT
φ : xφ = vec(Xφ), φ ∈ Π}.

We will now see thatMQAP has a ’simple’ description by linear equations
intersected with the cone C∗. Matrices Y ∈ MQAP are of order n2 × n2.
It will be useful to consider the following partitioning of Y into n×n block
matrices Y i,j ,

Y =







Y 1,1 . . . Y 1,n

...
. . .

...
Y n,1 . . . Y n,n






.

Let X = (x1, . . . , xn) be a permutation matrix (with columns xi). Then
X can be characterized by X ≥ 0,XT X = XXT = I. These quadratic
constraints translate into linear constraints on Y :

XXT =
∑

i

xix
T
i =

∑

i

Y i,i = I.

Similarly, (XT X)ij = xT
i xj = tr(xix

T
j ) = tr(Y i,j) = δij . Finally, we have

(
∑

ij xij)
2 = n2 for any permutation matrix X. We get the following set

of constraints for Y :
∑

i

Y i,i = I, tr(Y i,j) = δij , 〈J, Y 〉 = n2.(6.1)
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Povh and Rendl [55] show the following characterization ofMQAP , which
can be viewed as a lifted version of Birkhoff’s theorem 1.1.

Theorem 6.1. MQAP = {Y : Y ∈ C∗, Y satisfies (6.1)}.
It is not hard to verify that the above result would be wrong without

the seemingly redundant equation 〈J, Y 〉 = n2. We can therefore formulate
the quadratic problem QAP as a (linear but intractable) copositive program

zQAP = min{〈Q,Y 〉 : Y ∈ C∗, Y satisfies (6.1)}.

In [55] some semidefinite relaxations based on this model are investigated
and compared to previously published SDP relaxations of QAP.

We have now seen several instances of combinatorial optimization
problems, where CP relaxations in fact gave the exact value. This raises the
question whether there is some general principle behind this observation.
Burer [10] gives a rather general answer and shows that an appropriate
reformulation of quadratic programs is equivalent to a linear copositive
program.

Theorem 6.2. [10] Let c and aj be vectors from R
n, b ∈ R

k, Q ∈ Sn

and I ⊆ {1, . . . , n}. The optimal values of the following two problems are
equal.

min{xT Qx + cT x : aT
j x = bj , x ≥ 0, xi ∈ {0, 1} i ∈ I},

min{〈Q,X〉+ cT x : aT
j x = bj , a

T
j Xaj = b2

j ,

Xii = xi ∀i ∈ I,

(

1 xT

x X

)

∈ C∗}.

7. Optimal mixing rate of Markov chains. In the previous sec-
tions we focused on various ways to get matrix liftings of NP-hard opti-
mization problems. We conclude now with an SDP model which optimizes
the mixing rate of a finite Markov chain. Let G be a connected graph.
We consider random walks on the vertex set V (G). Suppose we can either
stay at i ∈ V (G) or move to j, provided ij ∈ E(G). Suppose further that
the transition probabilities pij are symmetric, pij = pji ∀ij. The resulting
Markov chain is now described by the transition matrix P satisfying

P ∈ PG := {P : P = PT , P ∈ Ω, pij = 0 ij /∈ E(G)}.

Finally, we assume that P is primitive (aperiodic and irreducible). This
means there exists some k such that P k > 0. Let us first recall the Perron-
Frobenius theorem for primitive matrices.

Theorem 7.1. Let P be a nonnegative primitive square matrix. Then
the spectral radius is a simple eigenvalue of P with eigenvector x > 0.
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We denote by π(t) ∈ R
n the probability distribution on V at time t.

The definition of the transition probabilities in P imply that π(t + 1) =
PT π(t). Symmetry of P therefore shows that π(t) is determined from the
initial distribution π(0) through π(t) = P tπ(0). We denote the eigenvalues
of P by

1 = λ1(P ) > λ2(P ) ≥ . . . ≥ λn(P ) > −1.

The Perron-Frobenius theorem tells us that 1
ne is eigenvector to the eigen-

value 1, which is also the spectral radius of P . Therefore

lim
t→∞

π(t) =
1

n
e.

What can be said about the speed of convergence? There are several ways
to measure the distance of π(t) from the equilibrium distribution π(∞) =
π = 1

ne. One such measure is the maximum relative error at time t

r(t) := max
ij

|(P t)ij − πj |
πj

,

see for instance [3]. Let

µP := max{λ2(P ),−λn(P )} = max{|λi(P )| : i > 1}

denote the second largest eigenvalue of P in modulus (SLEM). It is well
known that µP is closely related to how fast π(t) converges to the equilib-
rium distribution 1

ne.
Theorem 7.2. [3] Let P be a symmetric irreducible transition matrix.

Then

r(t) ≤ n(µP )t.

Moreover r(t) ≥ (µP )t if t is even.
Given the graph G, we can ask the question to select the transition

probabilities pij > 0 for ij ∈ E(G) in such a way that the mixing rate of
the Markov chain is as fast as possible. In view of the bounds from the
previous theorem, it makes sense to consider the following optimization
problem (in the matrix variable P ), see Boyd et al [9].

min{µP : P ∈ PG}.

They show that µP is in fact a convex function. It follows from the Perron-
Frobenius theorem and the spectral decomposition theorem for symmetric
matrices that µP is either the smallest or the largest eigenvalue of P− 1

nJ in
absolute value. Hence we can determine µP as the solution of the following
SDP, see [9].

min{s : sI � P − 1

n
J � −sI, P ∈ PG}(7.1)
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The variables are s and the matrix P . In [9], it is shown that an optimal
choice of P may significantly increase the mixing rate of the resulting chain.
Some further extensions of this idea are discussed in [64].

8. Computational progress. Up to now we have mostly concen-
trated on the modeling power of SDP and CP. From a practical point of
view, it is also important to investigate the algorithmic possibilities to ac-
tually solve the relaxations. Solving copositive programs is at least as hard
as general integer programming, hence we only consider solving SDP, which
are tractable. Before we describe various algorithms to solve SDP, we recall
the basic assumptions from Theorem 2.1,

∃X0 ≻ 0, y0 such that A(X) = b, C −AT (y0) ≻ 0.(8.1)

In this case (X, y, Z) is optimal for the primal-dual pair

min{〈C,X〉 : A(X) = b, X � 0} = max{bT y : C −AT (y) = Z � 0}

if and only if

A(X) = b, AT (y) + Z = C, X � 0, Z � 0, 〈X,Z〉 = 0.(8.2)

We are now going to briefly describe several classes of algorithms to solve
SDP and point out their strengths and limitations.

8.1. Interior-point methods. There exist several quite in-depth de-
scriptions of primal-dual interior-point path-following methods for SDP. We
refer to [67, 63, 14] and the SDP handbook [70]. The website 3 maintains a
collection of software, various data sets and provides benchmark compar-
isons of several competing software packages to solve SDP.

We therefore explain here only the basic ideas. First, it follows from
X � 0, Z � 0, 〈X,Z〉 = 0 that in fact XZ = 0. Interior-point (path-
following) methods can be viewed as a sequence of problems parametrized
by µ ≥ 0. Consider the set Pµ, defined as follows:

Pµ := {(X, y, Z) : A(X) = b, Z + AT (y) = C, X � 0, Z � 0, ZX = µI}.

Clearly, P0 6= ∅, if (8.1) holds. It can in fact be shown that Pµ defines a
unique point (Xµ, yµ, Zµ) for any µ > 0 if and only if (8.1) holds. See for
instance Theorem 10.2.1 in [70]. In this case the set {(Xµ, yµ, Zµ) : µ ≥ 0}
defines a smooth curve, parametrized by µ > 0. Following this path until
µ ≈ 0 clearly leads to an optimal solution of SDP. This is the basic idea
underlying interior-point methods. There is quite a variety of different
approaches to achieve this goal. Todd [65] gives a detailed summary of
popular variants to solve SDP by path-following methods.

3http://plato.asu.edu/bench.html
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The crucial step in all these variants consists of the following. Given
a current iterate (Xk, yk, Zk) with Xk ≻ 0 and Zk ≻ 0 and a target path
parameter µk > 0, we use the Newton method to determine a search direc-
tion (∆X,∆y,∆Z) towards (the point) Pµk

. If there are m equations in
the primal problem, so b ∈ R

m, this amounts to setting up and solving a
(dense) linear system of order m to determine ∆y. To set up this system,
and to recover ∆X and ∆Z, some additional computational effort is neces-
sary, involving matrix operations (multiplication, inversion) with matrices
of order n. Having the search direction, one needs to test whether the full
Newton step is feasible (Xk +∆X ≻ 0 and Zk +∆Z ≻ 0). If not, some sort
of backtracking strategy is used to find a smaller steplength leading to a
new iterate in the interior of S+. Then a new (smaller) target value for µ
is selected and the process is iterated until µ ≈ 0 and the current iterates
are primal and dual feasible.

The convergence analysis shows that under suitable parameter settings
it takes O(

√
n) Newton iterations to reach a solution with the required

accuracy. Typically, the number of such iterations is not too large, often
only a few dozen, but both the memory requirements (a dense m×m matrix
has to be handled) and the computation times grow rapidly with n and m.
To give some impression, we provide in Table 1 some sample timings to
solve the basic relaxation for Max-Cut, see (3.7). It has m = n rather
simple constraints xii = 1. We also consider computing the theta number
ϑ(G) (4.2), see Table 2. Here the computational effort is also influenced
by the cardinality |E(G)|. We consider dense graphs (m = 1

2

(

n
2

)

) and
sparse graphs (m = 5n). In the first case, the number n of vertices can
not be much larger than about 200, in the second case we can go to much
larger graphs. Looking at these timings, it is quite clear that interior-point
methods will become impractical once n ≈ 3000 or m ≈ 5000.

There have been attempts to overcome working explicitly with the
dense system matrix of order m. Toh [66] for instance reports quite en-
couraging results for larger problems by iteratively solving the linear system
for the search direction. A principal drawback of this approach lies in the
fact that the system matrix gets ill-conditioned, as one gets close to the
optimum. This implies that high accuracy is not easily reachable. We also
mention the approach from Kocvara and Stingl [38], which uses a modified
’barrier function’ and also handles large-scale problems. Another line of
research to overcome some of these limitations consists in exploiting spar-
sity in the data. We refer to [20, 50] for some first fundamental steps in
this direction.

8.2. Projection methods. To overcome some of the computational
bottlenecks of interior-point methods, we can exploit the fact that the
projection of an arbitrary symmetric matrix M to the cone of semidefinite
matrices can be obtained through a spectral decomposition of M . More
precisely, let M =

∑

i λiuiu
T
i with pairwise orthogonal eigenvectors ui.
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n time (secs.)
1000 12
2000 102
3000 340
4000 782
5000 1570

Table 1

Interior-point computation times to solve (3.7) with relative accuracy 10−6. Here
m = n.

n m = 1
2

(

n
2

)

time (secs.) n m = 5n time (secs.)
100 2488 12 500 2500 14
150 5542 125 1000 5000 120
200 9912 600 1500 7500 410

Table 2

Interior-point computation times to solve (4.2) with relative accuracy 10−6, m =
1

2

`n
2

´

and m = 5n.

Then

argmin{‖M −X‖ : X � 0} =
∑

i:λi>0

λiuiu
T
i =: M+,(8.3)

see for instance [24].
A rather natural use of projection was recently proposed in [34] and

can be explained as follows. We recall the optimality conditions (8.2) and
observe that 〈X,Z〉 = 0 can be replaced by the linear equation bT y −
〈C,X〉 = 0. Hence we can group the optimality conditions into the affine
linear constraints

(LP ) A(X) = b, (LD) AT (y) + Z = C, (LC) 〈C,X〉 − bT y = 0,

and the SDP conditions X � 0, Z � 0. The projection onto SDP is given
by (8.3). Projecting onto an affine space is also quite easy. Linear algebra
tells us that the projection ΠP (X) of a symmetric matrix X onto (LP ) is
given by

ΠP (X) := X −AT (AAT )−1(A(X)− b),

and similarly, Z has the projection

ΠD(Z) := C + AT (AAT )−1A(Z − C)

onto LD. Thus ΠD(Z) = C + AT (y) with y = (AAT )−1A(Z −C). Finally,
the projection onto the hyperplane LC is trivial. Thus one can use alter-
nate projections to solve SDP. Take a starting point (X, y, Z), and project
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it onto the affine constraints. This involves solving two linear equations
with system matrix AAT , which remains unchanged throughout. Then
project the result onto the SDP cone and iterate. This requires the spec-
tral decomposition of both X and Z.

This simple iterative scheme is known to converge slowly. In [34] some
acceleration strategies are discussed and computational results with m ≈
100, 000 are reported.

Another solution approach for SDP using only SDP projection and
solving a linear equation with system matrix AAT is proposed by Povh et
al [56] and Malick et al [46]. The approach from [34] can be viewed as
maintaining A(X) = b, Z + AT (y) = C and the zero duality gap condition
bT y = 〈C,X〉 and trying to get X and Z into S+. In contrast, the approach
from [56, 46] maintains X � 0, Z � 0, ZX = 0 and tries to reach feasibility
with respect to the linear equations. The starting point of this approach
consists of looking at the augmented Lagrangian formulation of the dual
SDP. Let

fσ,X(y, Z) := bT y − 〈X,AT (y) + Z − C〉 − σ

2
‖AT (y) + Z − C‖2(8.4)

and consider

max
y,Z�0

fσ,X(y, Z).

Having (approximate) maximizers y, Z (for σ and X held constant), the
augmented Lagrangian method, see [5], asks to update X by

X ← X + σ(Z + AT (y)− C)(8.5)

and iterate until dual feasibility is reached. The special structure of the
subproblem given by (8.4) allows us to interpret the update (8.5) differently.
After introducing the Lagrangian L = fσ,X(y, Z) + 〈V,Z〉 with respect
to the constraint Z � 0, we get the following optimality conditions for
maximizing (8.4).

∇yL = b−A(X)− σA(AT (y) + Z − C) = 0,

∇ZL = V −X − σ(AT (y) + Z − C) = 0, V � 0, Z � 0, 〈V,Z〉 = 0.

The condition ∇ZL = 0 suggests to set X = V , see (8.5). We note that L
could also be written as

L = bT y − σ

2
‖Z − (C −AT (y)− 1

σ
X)‖2 +

1

2σ
‖X‖2.

Therefore, at the optimum, Z must also be the projection of W := C −
AT (y)− 1

σ X onto S+, Z = W+. Thus ∇ZL = 0 becomes

V = σ(Z +
1

σ
X + AT (y)− C) = σ(W+ −W ) = −σW−,
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n m = 1
4n2 time (secs.)

400 40000 40
600 90000 100
800 160000 235

1000 250000 530
1200 360000 1140

Table 3

Boundary-point computation times to solve (4.2) with relative accuracy 10−6.

where W− is the projection of W onto −(S+). This leads to the boundary
point method from [56]. Given X,Z, solve the ∇yL = 0 for y:

AAT (y) =
1

σ
(b−A(X)−A(Z − C)).

Then compute the spectral decomposition of W = C − AT (y) − 1
σ X and

get a new iterate X = −σW−, Z = W+ and iterate.
The computational effort of one iteration is essentially solving the lin-

ear system with matrix AAT and computing the factorization of W . Fur-
ther details, like convergence analysis and parameter updates are described
in [56, 46]. To show the potential of this approach, we compute ϑ(G) for
larger dense graphs with m = 1

4n2, see Table 3. It is clear from these
results that projection methods extend the computational possibilities for
SDP. Zhao et al [71] recently generalized this approach to include second
order information in the updates. At higher computational cost they get
more accurate solutions.

The computational limitations of projection methods are determined
on one hand by the need to compute a spectral decomposition of a sym-
metric matrix, which limits the matrix dimension similar to interior-point
methods. On the other hand, the system matrix AAT does not change dur-
ing the algorithm, and any sparsity properties of the input can therefore be
fully exploited. In case of computing the ϑ function for instance, it turns
out that AAT is in fact diagonal. This is one explanation why instances
with m beyond 100,000 are easily manageable by projection methods.

8.3. Further solution approaches for SDP. To avoid limits on the
size of primal matrices (given through the spectral decomposition or the
linear algebra of interior-point methods), one can also use the encoding of
semidefiniteness through the condition λmin(X) ≥ 0. The computation of
λmin(X), for symmetric X, can be done iteratively for quite large matrices.
The only requirement is that v = Xu can be evaluated. In particular, X
need not be stored explicitly. The spectral bundle method exploits this
fact, and applies to SDP, where (primal) feasibility implies constant trace.
It was introduced in [32] and we refer to this paper for all further details. It
turns out that SDP with rather large matrices (n ≈ 10, 000) can be handled
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by this method, but the convergence properties are much weaker than in
the case of interior-point methods. Helmberg [30] describes computational
results on a variety of large scale combinatorial optimization problems.

Another idea to get rid of the semidefiniteness condition is to use the
the factorization X = RRT , and work with R using algorithms from non-
linear optimization. Burer and Monteiro [11] investigate this approach and
present some encouraging computational results for some specially struc-
tured SDP like the Max-Cut relaxation (3.7). The drawback here is that
by going from X to the factor R, one loses convexity.

Finally, SDP based relaxations have been used successfully to get exact
solutions. Exact solutions of the Max-Cut problem are reported in [58]
for instances having several hundred vertices, see also the thesis [69]. A
combination of polyhedral and SDP relaxations for the bisection problem
is studied in [1]. Exact solutions of rather large sparse instances (n ≈ 1000)
are obtained for the first time. Finally, exact solutions for Max-k-Cut are
given in [21].

Algorithms for linear optimization have reached a high level of sophis-
tication, making them easily accessible even for non-experts. In contrast,
most algorithms for SDP require a basic understanding of semidefinite op-
timization. While small problems n ≈ 100 can be solved routinely, there
is no standard way to solve medium sized SDP in a routine way. Finally,
it is a challenging open problem to find efficient ways of optimizing over
S+ ∩N .

Acknowledgement: Many thanks go to Nathan Krislock and an
anonymous referee for giving numerous suggestions for improvement, and
for pointing out minor inconsistencies.
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